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Abstract This article investigated both the ability of

naive human subjects to learn interval production, as well

as the properties of learning generalization across modali-

ties and interval durations that varied systematically from

the over-trained interval. Human subjects trained on a 450-,

650-, or 850-ms single-interval production task, using

auditory stimuli to define the intervals, showed a significant

decrease in performance variability with intensive training.

This learning generalized to the visual modality and to non-

trained durations following a Gaussian transfer pattern.

However, the learning carryover followed different

rules, depending on the duration of the trained interval as

follows: (1) the dispersion of the generalization curve

increased as a function of the trained interval, (2) the

generalization pattern was tilted to the right in the visual

condition, and (3) the transfer magnitude for 650 ms was

less prominent than for the other two intervals. These

findings suggest the existence of neural circuits that are

tuned to specific time lengths and that show different temporal

processing properties depending on their preferred interval

duration.
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Introduction

The ability to quantify time in the range of hundreds of

milliseconds is a fundamental process in a wide range of

sensory and motor tasks (Ivry 1996; Gibbon et al. 1997;

Buonomano and Karmarkar 2002; Merchant et al. 2008a).

Time in this range is essential for perception of speed, for

producing and understanding speech and music, and for

dancing and performing sports (Mauk and Buonomano

2004; Merchant and Georgopoulos 2006; Merchant et al.

2009). Hence, such complex behaviors depend on temporal

information processing at perceptual, motor, and cognitive

levels. Two opposite mechanisms have been proposed as

the neural substrate of interval timing in the hundreds of

milliseconds (Ivry and Schlerf 2008; Mauk and Buono-

mano 2004): a centralized mechanism that processes

temporal information in a multimodal fashion, and across

perceptual and motor-timing tasks; and a distributed

mechanism that involves a specific neural circuit for dif-

ferent timing behaviors. Recent neuroimaging and psy-

chophysical studies have led to an intermediate hypothesis,

namely, that interval timing depends on a partially over-

lapping distributed mechanism, where main-core cortical

and subcortical timing structures, such as SMA, prefrontal,

and posterior parietal cortex, as well as the basal ganglia

and the cerebellum, can be influenced differently by con-

text-dependent information that is processed by the corre-

sponding brain areas (Lewis and Miall 2003; Merchant

et al. 2008a, b; Grondin 2001).

In this context, the study of perceptual interval learning

and the generalization properties of such learning have

provided important insights into the neural underpin-

nings of temporal information processing. For exam-

ple, using interval discrimination it has been shown

that intensive learning can generalize across untrained
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auditory frequencies (Wright et al. 1997; Karmarkar and

Buonomano 2003), sensory modalities (Nagarajan et al.

1998; Westheimer 1999), stimulus locations (Nagarajan

et al. 1998), and even from sensory to motor-timing tasks

(Meegan et al. 2000). However, all these studies found no

generalization toward untrained interval durations. It has

been suggested that the learning transfer depends on the

improvement of temporal processing and not on more

efficient memory or decision processes, at least for audi-

tory interval discrimination (Karmarkar and Buonomano

2003). Therefore, these findings not only support the

notion of a centralized or a partially overlapping distrib-

uted timing mechanism, but they also introduce the con-

cept of duration-specific circuits. Of course, these two

features are not mutually exclusive when a large timing

neural network is considered (Karmarkar and Buonomano

2007). Nevertheless, these studies have only tested large

differences between the trained and untrained testing

intervals, precluding the investigation of a potential gen-

eralization curve across nearby durations, which could

have different shapes and widths depending on the length

of the trained interval. Furthermore, timing generalization

studies have focused on perceptual rather than motor

timing, which could have different learning transfer

properties if the timing mechanism is not totally central-

ized in these two temporal processing conditions (Merchant

et al. 2008a).

Thus, in the present study, we investigated the gener-

alization properties of intensive, single-interval production

learning over a wide range of non-trained intervals (starting

with small differences from the trained interval), in human

subjects performing the task for one of three different

training intervals. In addition, we tested whether the gen-

eralization functions were modulated by the modality of

the stimuli used to define the interval. The results support

the existence of interval-tuned neural populations that

show different temporal processing properties according to

specific generalization rules, which depend on the duration

and modality of the trained interval.

Methods

Subjects

Forty volunteers (20M, 20F) between the ages of 18 and

41 years (mean 25.47) with normal hearing, and normal or

corrected vision participated in this study. All subjects

volunteered and gave written consent for this study before

commencement of experiments. The study complied

with the Declaration of Helsinki and was approved by

the National University of Mexico Institutional Review

Board.

Apparatus

Participants were comfortably seated on a chair facing a

computer screen in a quiet room, and they tapped on the

spacebar of a computer keyboard. All participants per-

formed the task using a finger of their preferred hand (one

subject was left-handed). The subjects could not see their

own hand during tapping; the auditory stimuli were pre-

sented through noise-canceling headphones (Sony, MDR-

NC50), and, in addition, subjects listened to white noise

while performing the task. Hence, the participants did not

have auditory or visual feedback from the tapping move-

ment. For data collection, a custom-made Visual Basic

program was used (Microsoft Visual Basic 6.0). This pro-

gram controlled the timing of the stimuli and collected the

execution data. Computers with high-speed processors

([2.0 GHz) were used for data collection.

Task

Subjects performed a single time intervals production task.

For a given interval duration, this task had instruction and

internally driven trials presented in blocks (see Fig. 1a). At

the beginning of each trial in the instruction period, a target

interval (two stimuli separated by a particular duration or

inter-stimulus interval [ISI]) was presented, and then the

subject tapped twice on the push-button to reproduce the

same interval. This was repeated for n1 instruction trials.

Immediately after, the subject entered the internally driven

period that consisted of n2 trials in which he/she repro-

duced a single interval after a go signal appeared on the

screen. Thus, the instruction period involved the repro-

duction of a time interval using an external guide that was

renewed from trial to trial, whereas the internally driven

period required the production of a time interval using an

internal temporal representation formed during the

instruction. Subjects were requested to respond 200 ms

after presentation of the target interval or the go signal,

with no other restriction than a maximum reaction time of

2,000 ms. This reaction time was 689.8 ± 242 ms

(mean ± SD). The inter-trial interval was 1.5 s. We tested

intervals delimited by auditory (pure tone, 32 ms,

1,000 Hz, 80 dB) or visual (green square, 16 ms, 10-cm

side) stimulus markers.

Procedure

The generalization of interval production was investigated

with respect to the abilities of human subjects to transfer

learning from three standard intervals (450, 650, or

850 ms) across their contiguous untrained intervals and

across the modality of the stimuli used to delimit the

interval. Subjects were assigned pseudorandomly to the
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450- (n = 14), 650- (n = 12), or the 850-ms (n = 14)

standard intervals.

For each standard interval, the experiment consisted of a

pre-test, a training phase, and a post-test for a total of ten

consecutive sessions, one session per day (see Fig. 1b). In

the pre- and post-test sessions, the performance of the

subjects on the single-interval production task was mea-

sured using a set of seven target intervals that varied in

duration systematically around the standard interval (see

Table 1). Of course, this set included the standard interval.

In order to determine the generalization process for as

many target intervals as possible, the subjects were

assigned pseudorandomly to one of two sets of target

intervals (protocol A or B in Table 1). Therefore, for a

particular standard interval, we tested 12 target intervals in

two subgroups of subjects. In addition, the order of pre-

sentation of these seven target intervals was random.

During the pre- and post-test, each block consisted of 5

trials in the instruction period followed by 20 trials of the

internally driven period. The task was initially performed

using auditory markers for delimiting the ISI for all the

target intervals, and then it was repeated using visual

markers. We limited the number of trials in these two

conditions with the purpose of avoiding a learning process

during the pre- and post-test. Nevertheless, it is important

to mention that before the pre-test data collection, practice

trials were given for a set of intervals that was different

from the target intervals used during the pre- and post-test

periods. The practice session continued until the subjects

acknowledged that they understood the task and were

comfortable with their performance. Feedback was given

after each trial of the instruction period, showing the sub-

ject his/her produced inter-tap interval as a number on the

screen. However, no feedback was given during the inter-

nally driven period, in order to be able to measure the

reliability of the interval representation acquired during the

training phase.

In the training phase, the subjects completed 60 task

blocks (900 trials, *60 min) each day, using the standard

interval delimited only by auditory markers. In this case, a

block consisted of 5 trials in the instruction period followed

by 15 trials of the internally driven period, and a 5-min

pause was introduced every 20 blocks. The training phase

lasted for eight consecutive days. All trials (instruction and

internally driven) during training were followed by feed-

back, since pilot studies showed that feedback was critical

for appropriate learning (data not shown).

Data analysis

General

The standard deviation (SD) of the produced intervals was

used as a measure of performance and was calculated for

each block during the instruction and internally driven

Fig. 1 a Illustration of the single interval production task showing

one trial of each period (instruction and internally driven). ISI inter-

stimuli interval, IRI inter-tap interval. b The three phases of the

experiment (pre-test, training phase, and post-test) are shown with the

corresponding number of days. During the pre- and post- test, the

subjects performed both periods of the single-interval production task

for a set of seven durations, each duration presented in a block of 5

instruction trials plus 20 internally driven trials. The seven duration

blocks were first delimited by auditory stimuli, and then were

delimited by visual stimuli in independent blocks. During the training

phase, the subjects completed 60 blocks of trials per day. Each block

consisted of 5 instruction trials plus 15 internally driven trials, using

only the standard interval delimited always by auditory stimuli

Table 1 Standard intervals (bold) and their respective sets of target

intervals

Standard

Interval

450 ms 650 ms 850 ms

Set A B n A B n A B n

Test Intervals

(ms)

300 300 10 450 450 10 600 600 12

400 10 550 5 700 8

415 6 600 8 750 7

430 9 620 5 800 7

440 7 630 8 830 8

450 450 14 650 650 12 850 850 14

460 7 670 8 870 8

470 9 680 5 900 7

485 6 700 8 950 7

500 10 750 5 1,000 7

600 600 10 850 850 10 1,100 1,100 10

1,400 3

Columns A and B represent the two different sets of target intervals,

and n is the corresponding number of subjects. All sets had seven

intervals, column B for 850 ms shows eight intervals because for

three subjects the set included an interval of 1,400 ms

Exp Brain Res (2009) 197:91–100 93

123



periods. Produced intervals were considered outliers and

discarded when their duration was 1.5 times below or

above the 20th and 80th percentile, respectively.

Standard statistical techniques were used for data anal-

ysis including the t-test, repeated-measures analysis of

variance (ANOVA), and linear regression (Snedecor and

Cochran 1989). The reported P-values in the repeated-

measures ANOVAs correspond to the Greenhouse–Geisser

test, which corrects for possible deviations in sphericity.

The level of statistical significance to reject the null

hypothesis was a = 0.05. Subroutines written in Matlab

(version 7.3.0.267, R2006b) and the SPSS statistical

package (version 12, SPSS Inc., Chicago, IL, 2003) were

used for the statistical analyses.

Transfer of learning

Transfer curves were constructed by subtracting the SD of

the post-test from the pre-test for each target interval. We

called this measure PrePost-SDDiff. Hence, positive values

of PrePost-SDDiff indicate an improvement in task

performance.

Results

The single-interval production task required the execution

of two tapping movements separated by a particular dura-

tion, in trials separated in two different conditions or

periods. During the instruction period, subjects reproduced

a time interval that was previously presented as two brief

sensory stimuli, whereas in the internally driven period

subjects produced the same interval after a go signal, which

implied the use of an internal interval representation that

was previously obtained during the instruction period (see

‘‘Methods’’ section, Fig. 1a). These two task periods were

presented in blocks of trials for a particular interval dura-

tion and marker modality. In order to determine the

learning abilities of interval reproduction and the learning

generalization properties across modalities and non-trained

interval durations, the subjects performed both periods of

the single-interval production task during three experi-

mental conditions: a pre-test, a training phase, and a post-

test (Fig. 1b). The difference in performance variability

between the post- and pre-test is a measure that not only

reflects the overall learning achieved during the training

phase for the over-trained interval duration, but also reveals

the learning generalization abilities across non-trained

conditions. Accordingly, during the pre- and post-tests of

the present study, the subjects executed the single-interval

production task for different interval durations defined by

auditory or visual markers, whereas in the training phase

they performed the task for only one of three standard

intervals in the auditory marker condition for eight con-

secutive days (Fig. 1b). Hence, the initial question in this

experiment was whether the intensive practice during the

training phase could decrease the variability of interval

production in human subjects.

Interval-production learning

Figure 2 shows the averaged standard deviation (±SEM

across subjects) of the produced intervals plotted as a

function of the training day for the instruction (left) and

internally driven (right) periods of the task, and for the

three standard intervals (450, 650, and 850 ms). It is clear

that the performance improved as a result of the training in

all conditions, following a typical learning curve across

standard intervals and task periods. However, subjects were

pooled for this and the subsequent analyses only if they

showed: (1) a significant change in performance across the

training days according to a repeated-measures ANOVA

(data not shown), and (2) a negative slope in their power

regression learning curve (see Eq. 1 below). In fact, five

subjects did not meet these criteria and were eliminated

from the analyses: one for 450-, two for 650-, and two for

the 850-ms standard intervals.

We carried out a repeated-measures ANOVA for each

task period using the SD as dependent variable, the days of

training as the within-subject factor, and the standard

interval as the between-subject factor. For the internally

driven period, the results showed significant main effects

on days of training (F7,224 = 21.536, P \ 0.0001) and

standard interval (F2,32 = 17.607, P \ 0.0001), as well as

on the day 9 interval interaction (F14,224 = 2.116,

P = 0.05). The analysis of the instruction period showed

similar results, with significant main effects on days of

training (F7,224 = 10.169, P \ 0.0001) and standard

interval (F2,32 = 20.2, P \ 0.0001), and on the day 9

interval interaction (F14,224 = 2.107, P = 0.045). There-

fore, these findings support the idea that training improves

the production of time intervals across standard intervals

and task periods. In addition, this analysis indicates that the

learning dynamics and/or the initial timing variability was

different across standard intervals. Therefore, in order to

characterize further the learning process, we fitted the

following power function to the learning curves for each

subject:

SD ¼ bTm ð1Þ

where SD is the standard deviation of the produced inter-

vals, T the day of training, b the intercept, and m the time

constant (slope) of the power function. Since the fittings of

this function were appropriate (see Fig. 2 legend), the next

step was to test whether the slope and intercept of the

learning curves were different across standard intervals and
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task periods. Table 2 shows the means (±SEM across

subjects) of the power function coefficients for the different

standard intervals and task periods, as well as the mean

(±SEM) of the SD difference between the last and first

training days (SDdiff). ANOVAs were performed using

each of these descriptive parameters (m, b, and SDdiff) as

dependent variables, and the standard interval and task

period (instruction vs. internally driven) as factors. The

results showed no significant main effects of the standard

interval on the time constant of the learning curves (m),

suggesting that the learning time course was independent

of the trained interval. In contrast, the standard interval

showed significant main effects when the intercept b

(F2,64 = 42.99, P \ 0.0001) and SDdiff (F2,64 = 3.782,

P = 0.028) were used as dependent variables. These last

results indicate that the initial temporal variability followed

the scalar property of temporal processing (Gibbon et al.

1997; Merchant et al. 2008a, b, c, d).

In addition, the results of the ANOVAs showed that

during the internally driven period, m (F1,64 = 5.336,

P = 0.024), b (F1,64 = 4.808, P = 0.032), and SDDiff

(F1,64 = 3.209, P = 0.078, marginal effect) were signifi-

cantly larger than during the instruction period (see

Table 2), suggesting that the learning process based on an

internal representation of time was larger than during the

instruction period, where subjects used their working

memory to reproduce the standard interval.

Overall, these results confirm that extensive training in

the single-interval production task induces a learning pro-

cess characterized by a decrease in the temporal processing

variability as a function of the training day. This learning

curve was an asymptotic function with a negative slope that

was not influenced by the trained interval.

Learning generalization of interval production

Changes in performance variability from the pre- to the

post-test determined the magnitude of learning in the

trained standard interval using auditory markers, as well as

the magnitude of generalization in the untrained conditions

due to learning. Consequently, as a first step, we compared

the SD of the standard interval measured before and after

the training phase for each subject during the internally

driven period (Suppl. Fig. S1). We found that most sub-

jects showed a reduction of the interval-production vari-

ability as a result of extensive training, except for those that

were eliminated from the analysis due to their lack of

learning (see above).

Fig. 2 Averaged learning curves. SD (mean ± SEM) of the pro-

duced intervals during the training phase plotted as a function of the

training day. Filled circles, crosses, and open circles are data for 450,

650, and 850 ms, respectively. The lines are the predicted learning

curves calculated from the fitting of data to a power function, solid

lines for 450 ms (instruction: R2 = 0.8938, P = 0.0004; test:

R2 = 0.9421, P = 0.0001), dotted lines for 650 ms (instruction:

R2 = 0.7739, P = 0.004; test: R2 = 0.8996, P = 0.0003), and

dashed lines for 850 ms (instruction: R2 = 0.6498, P = 0.0157; test:

R2 = 0.8518, P = 0.0011)

Table 2 Means ± SEM of the descriptive parameters of the learning curves for the different standard intervals and for the two task periods

Interval 450 ms 650 ms 850 ms

Period Instruction Internally driven Instruction Internally driven Instruction Internally driven

b 25.82 ± 1.7 30.16 ± 2.2 43.62 ± 3.7 47.21 ± 4.2 50.24 ± 2.8 58.52 ± 3.4

m -0.098 ± 0.02 -0.156 ± 0.02 -0.137 ± 0.02 -0.163 ± 0.01 -0.115 ± 0.03 -0.172 ± 0.04

SDdiff 4.59 ± 1.2 9.12 ± 1.2 8.03 ± 3.2 11.59 ± 2.3 12.35 ± 4.8 19.63 ± 5.5

Parameters m and b are coefficients of the power function, and SDdiff is the difference of the SD between the last and the first training days
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The main objective of the present study was to deter-

mine the transfer rules for interval-production learning.

Specifically, we were interested in studying the transfer

properties of single-interval production learning over non-

trained (target) intervals and across the modalities used for

delimiting the interval duration. Thus, an ANOVA was

carried out using a repeated measures design, in which the

SD was the dependent variable, the experimental phase

(pre- or post-test) was the within-subject factor, and the

standard interval, target interval, and modality were the

between-subject factors. The results showed a significant

main effect for experimental phase (F1,391 = 197.577,

P \ 0.0001), as well as a significant effect for the

phase 9 standard interval interaction (F2,391 = 6.055,

P = 0.003), but not a significant effect for the

phase 9 target interval interaction (F27,391 = 1.32,

P = 0.132). Additionally, significant main effects were

found for standard interval (F2,391 = 4.658, P = 0.01) and

target interval (F27,391 = 12.346, P \ 0.0001). In contrast,

no significant main effects were found for the modality or

its interaction with the other two factors. Therefore, these

results indicate that after training there was a generalization

process to some of the non-trained intervals, characterized

by a significant decrease in performance variability in

target intervals. This after-training improvement across

target intervals was modulated by the standard interval, but

not by the modality of the marker.

With the aim of studying further the properties of the

interval-production learning generalization, transfer curves

were constructed by subtracting the SD of the post- from

the pre-test for each target interval. We called this measure

PrePost-SDDiff. Figure 3 corresponds to the interquartile

box-plots of the PrePost-SDDiff as a function of the target

interval for all the standard intervals (450, 650, and

850 ms). t-Tests were performed for each target interval to

determine whether PrePost-SDDiff was statistically dif-

ferent from zero. Asterisks above the interquartile box in

these figures indicate the statistical significance of the

generalization.

Figure 3 (top) shows a specific generalization pattern for

the 450-ms standard interval, with a smooth decrease in the

PrePost-SDDiff as the target interval was farther away

from the standard interval, describing a generalization

curve that was similar to a neural-tuning function. In

addition, the results showed some degree of cross-modal

generalization for the 450-ms standard interval. For visual

markers, the generalization curve was tilted to the right

with respect to the auditory curve.

For the 650-ms standard interval, there was a general-

ization pattern that was less structured across target inter-

vals or marker modalities (Fig. 3 middle). In fact, fewer

intervals showed a significant change in the PrePost-

SDDiff. Hence, we concluded that a less prominent

transfer accompanied the extensive training for the 650-ms

interval.

The generalization curves for the 850-ms standard,

depicted in Fig. 3 (bottom), show an extensive transfer of

learning across target intervals and marker modalities.

Indeed, the generalization was wide with respect to the

number of target intervals around the standard with a sig-

nificant PrePost-SDDiff. Remarkably, the transfer was very

similar for the non-trained modality, showing a general-

ization for visual markers that was as large as in the

auditory condition.

A Gaussian function was fitted to the PrePost-SDDiff as

a function of the target interval to determine the mean and

half-height dispersion of the generalization curves above.

The resulting significant fittings are shown in Fig. 4a,

where it is evident that the proportion of variance

accounted for (R2) by the Gaussian models was lower for

the 650-ms standard interval. This is in accordance with the

previous results showing that, for this standard interval, the

generalization across non-trained intervals was less evident

than for the other two standard intervals (see above).

Nevertheless, it is important to emphasize that four dis-

tinctive generalization rules could be extracted from these

Gaussian fittings: (1) the half-height dispersion of the

generalization curves increased as a function of the stan-

dard interval, (2) the generalization curves for the visual

marker condition were tilted to the right with respect to the

auditory marker condition, (3) the bias of the distribution

mean with respect to the actual standard interval increased

as a function of the magnitude of this interval, and (4) both

marker modalities showed similar height and dispersion in

their Gaussian distribution. Indeed, Fig. 4b shows that

there was a linear increase in the half-height dispersion as a

function of the standard interval for both marker modali-

ties. In addition, the results showed that there was a linear

decrease in the constant error (standard interval - distri-

bution mean) as a function of the standard interval

(Fig. 4c). Finally, this linear decrease in constant error was

shifted upwards in the visual marker condition across the

standard intervals (Fig. 4c).

Timing and sensorimotor transfer

A question that emerged from the results was whether the

observed generalization could be due to sensorimotor and/

or procedural learning instead of interval-timing learning,

given that an improvement in sensorimotor processing

could lead to similar findings. To address this issue, we

took advantage of the structure of the task that was com-

posed of two periods: the instruction period that required

the reproduction of a time interval using an external guide

that was renewed from trial to trial, and the internally

driven period that involved the production of a time
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interval using an internal temporal representation. Thus, if

the transfer of learning was mainly due to the sensorimotor

component of the task, we would expect a similar gener-

alization pattern in both task periods. To test this hypoth-

esis, first we normalized the Pre-Post_SDDiff to be able to

compare the transfer magnitude between the instruction

and internally driven periods, since each period had a

different number of trials. Thus, the Pre-Post_SDDiff was

divided by the Pre-test SD, and this ratio was multiplied by

100, and expressed as a percentage of the Pre-test SD. This

measure, called percentage of gain, was used as the

dependent variable in an ANOVA in which the task period,

the standard interval, and the modality were used as fac-

tors. Interestingly, we found a significant main effect for

task period (F1,636 = 12.799, P \ 0.0001), but non-sig-

nificant effects on the two- and three-way interactions

between the task period and the other independent vari-

ables. In fact, Table 3 shows that the mean values of

the percentage of gain were larger in the internally driven

than in the instruction period across standard intervals and

Fig. 3 Pre-Post SD difference

during the internally driven

period. Inter-quartile ranges

(white bars) and medians (black

line within bars) of Pre-Post

difference are plotted as a

function of the target interval.

Auditory (top) and visual

marker condition (bottom). One
asterisk indicates marginal

effects (P \ 0.1), two asterisks
indicate significant (P \ 0.05)

differences from zero of the

Pre–Post SD difference as

measured by one sample t-test
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modalities. Therefore, these results suggest that the repor-

ted learning generalization in the internally driven period

was mainly due to an increase in precision of an internal

temporal processing mechanism.

Discussion

The purpose of this study was to determine the capability

of interval-production learning in naive subjects and to

determine the generalization properties of this learning

across a wide range of untrained intervals and between two

sensory modalities used as interval markers. Regarding the

first point, the results revealed that a learning process

occurred during intensive training for single-interval

production. In fact, as far as we know our results represent

the first demonstration of interval-production learning for

different trained intervals in human subjects. Interestingly,

the time course of learning observed across trained intervals

in this study is consistent with that observed for auditory- and

somatosensory-interval discrimination (Kristofferson 1980;

Wright et al. 1997; Nagarajan et al. 1998; Karmarkar and

Buonomano 2003; Westheimer 1999). All these experiments

consisted of an intensive daily training session repeated for

more than 7 days. Under these circumstances, the learning

occurred mainly during an initial rapid-improvement

stage that lasted for 2 or 3 days, followed by a slower-

improvement phase that spanned the remaining sessions.

Therefore, our data, together with the findings reported in the

literature, suggest that besides the initial procedural learning

involved in each particular task, there is a learning process

that may depend on the common or overlapping timing

mechanism.

Not all subjects showed a learning process according to

our criteria (negative slope for the learning curves and

significant change in SD across training days). Since the

learning transfer found in non-learners may be interpreted

as noise, these subjects were excluded from further anal-

yses, as in previous timing generalization studies (Wright

et al. 1997; Karmarkar and Buonomano 2003).

An important finding of this study was the generaliza-

tion pattern across untrained intervals that were contiguous

to the trained standard interval, which at first glance seems

Fig. 4 a Gaussian fittings of the

Pre-Post SD difference for the

different standard intervals and

the two interval-marker

modalities. b Half-height

dispersion as a function of

standard interval and c constant

error as a function of standard

interval. In b and c, the auditory

and visual interval markers are

represented by filled circles—

solid lines, and open circles—

dashed lines, respectively

Table 3 Means ± SEM of percentage of gain across modalities and

standard intervals for the two task periods

Modality Standard interval Instruction Internally driven

Auditory 450 15.75 ± 8.03 26.34 ± 3.57

650 1.97 ± 12.78 13.91 ± 5.62

850 15.03 ± 5.57 33.38 ± 3.55

Visual 450 14.42 ± 10.96 27.08 ± 5.09

650 20.39 ± 9.89 25.17 ± 3.52

850 21.08 ± 7.78 27.49 ± 3.51

Means were calculated for data from intervals with a significant

PrePost-SDdiff in the internally driven period
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to be at odds with the previous reports of interval-specific

perceptual generalization (Kristofferson 1980; Wright et al.

1997; Nagarajan et al. 1998; Karmarkar and Buonomano

2003). However, it is important to consider, first, that most

previous studies used shorter intervals than those used here,

and second, that we tested the generalization of interval

production instead of interval discrimination. More rele-

vant is the fact that the earlier experiments used untrained

intervals differing by more than 50% from the trained

intervals, decreasing their sensitivity for detecting a cross-

interval generalization process. Consequently, the present

results suggest the existence of plastic neural networks that

are duration specific but that follow these rules: (1) their

interval specificity decreases as a function of the trained

interval, showing the scalar property at the neurophysio-

logical level; (2) the circuits have access to bimodal

information, but the intervals defined by visual stimuli are

produced shorter than the same intervals defined by audi-

tory markers.

Concerning the first generalization rule, it has been

shown that in both a self-paced and during the continu-

ation phase of a synchronization-continuation tapping

task, there is a clear execution preference toward

particular intervals, following a categorical process.

Interestingly, this preference follows a multimodal dis-

tribution that converges to zero around 250, 450, and

788 ms, with a large bias around 650 ms (Collyer et al.

1992, 1994). Accordingly, in interval discrimination

studies, it was found that after extensive practice the

variability in temporal performance reveals temporal

categories or steps (Kristofferson 1980). In addition,

Collyer et al. (1994) found that the dispersion of the self-

paced intervals also increased as a function of the pre-

ferred duration. Therefore, these experiments not only

support our hypothesis of duration-specific neural circuits

that follow the scalar property, but they also emphasize

the concept of under-representation of intervals around

650 ms in these circuits. The less prominent generaliza-

tion pattern for the 650-ms standard interval could be the

result of uneven requirements in the temporal-motor

processing across behaviors of every-day life (i.e.,

Fant and Kruckenberg 1996; Moelants 2002), and/or the

result of the neurophysiological properties of the timing

circuits.

At least two non-mutually exclusive neural mecha-

nisms could explain the duration specificity, the scalar

property, and the 650-ms under-representation. It has been

suggested that temporal processing depends on a set of

neural oscillators that work at distinctive frequencies

(Treisman et al. 1992). The preferred frequencies could

define the duration specificity for a particular set of

intervals (i.e., 450 and 850 ms), and excluding others (i.e.,

650 ms), and the period of the oscillator could reproduce

the scalar property based on its resolution (Collyer et al.

1994). An alternative is the interval-based model that

assumes that different intervals are represented by dura-

tion-specific elements (Ivry 1996). This idea was sup-

ported by recent neurophysiological experiments from our

laboratory, where the neural activity of the supplementary

motor cortex was recorded while monkeys performed

interval-production tasks. The results not only showed that

neurons are tuned to particular interval durations but also

indicated that, at the population level, the distribution of

preferred intervals was bimodal, with peaks around 450

and 850 ms (Merchant et al. 2008d). In addition, a

Gaussian fitting analysis showed that neural tuning

increased its dispersion as a function of the preferred

interval, following the scalar property of interval timing

(Merchant et al. 2008d). Overall, these findings support

the idea that the pattern of generalization observed in the

present study could depend on an interval-tuning mecha-

nism that can be trained to produce more precise temporal

processing. Nevertheless, a differential change in neural

network states (Buonomano 2000; Karmarkar and

Buonomano 2007) or in the slope of neural tuning curves

(Schoups et al. 2001) could produce similar results.

Needless to say, more empirical data are needed to vali-

date or reject these ideas.

Many studies have found that an auditory stimulus of

a given duration tends to be judged as longer than a

visual stimulus of the same duration (Goldstone and

Lhamon 1974; Wearden et al. 1998; Grondin 2001). This

effect has been attributed to an oscillator that decreases

its rate during the visual condition (Wearden et al. 1998).

In the present study we found that the visual general-

ization curve was tilted to the right with respect to the

auditory curve. From the perspective of the interval-

tuning model, the intensive training for one interval

defined by auditory markers increased the quality of

temporal information processing in a population of cells

tuned to such interval. Thus, the right tilt in the gener-

alization distribution during the visual condition implies

that the comparison between the actual visual interval

and the memory trace of the auditory interval by the

enhanced tuned cells produces a bias in the transfer

pattern.

Finally, the comparison between the instruction and

internally driven periods during the learning and general-

ization suggests that the latter task period not only involves

procedural and/or sensorimotor learning but also depends

on an improvement in the temporal processing resolution.

Similar findings were found in an auditory interval-dis-

crimination task that showed that the generalization

learning was independent of an overall enhancement in

the ability to store and compare stimuli (Karmarkar and

Buonomano 2003).
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