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Abstract. We used different tools from experimental psychology to ob-
tain a broad picture of the possible neural underpinnings of temporal
processing in the range of milliseconds. The temporal variability of hu-
man subjects was measured in timing tasks that differed in terms of:
explicit-implicit timing, perception-production, single-multiple intervals,
and auditory-visual interval markers. The results showed a dissociation
between implicit and explicit timing. Inside explicit timing, we found
a complex interaction in the temporal variability between tasks. These
findings do not support neither a unique nor a ubiquitous mechanism
for explicit timing, but support the notion of a partially distributed tim-
ing mechanism, integrated by main core structures such as the cortico-
thalamic-basal ganglia circuit, and areas that are selectively engaged
depending on the specific behavioral requirement of a task. A learning-
generalization study of motor timing also supports this hypothesis and
suggests that neurons of the timing circuit should be tuned to interval
durations.

Keywords: Interval perception and production, circle drawing, multi-
dimensional statistics, learning and generalization.

1 Introduction

Time is among the most crucial magnitudes that living beings must quantify in
order to survive. From microseconds to circadian rhythms, temporal information
is used to guide behavior and specific brain mechanisms have been suggested for
the time processing in different time scales covering twelve orders of magnitude.
Even though there is not a time sensory organ, organisms are able to extract
temporal information from stimuli of all sensory modalities, whether it is the
interval between two notes in a symphony or the duration of an eclipse. In ad-
dition, during music execution and dancing human beings can generate complex
sequences of time intervals with their movements. In some behaviors, an explicit
representation of the interval to be timed is used as in tapping with a rhythm,
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while in others time processing is covertly present or implicit as during continu-
ous drawing, where timing is an emergent property of the trajectory produced [1].
Also, time intervals can be produced or estimated just once or as many times as
it is needed. Therefore, some of the key elements of temporal processing include
the time scale being quantified, the modality of the stimulus, whether time is
being measured for a movement or for a perceptual decision, whether the task
involves single or multiple intervals, and the implicit or explicit nature of timing.

A central question among time researchers is whether a single neural mecha-
nism is employed for the measurement of time across all kinds of behaviors or
if, on the contrary, different areas and encoding strategies are employed by the
brain depending on the behavioral context in which time is processed. These two
opposing views regarding the mechanism of explicit timing are mainly used for
the range of hundreds of milliseconds, a time scale that has been investigated in
our laboratory. Although many behaviors that are essential for survival require
the temporal processing in this range, the search for the brain mechanisms for
time measurement in the scale of milliseconds has not been investigated until
recently. In contrast, the psychophysics of temporal quantification started as
early as the late XIX century (see [2]), and many timing tasks have been used to
test the existence of one or multiple neural clocks. As a natural extension of the
psychophysical experiments, a large amount of neuroimaging studies have been
conducted recently to describe the brain circuits that are activated in a number
of timing tasks.

The present chapter is divided in two sections. The first one is devoted to the
comparison between the neuroimaging results and the predictions made by the
psychophysical measurements performed in our laboratory regarding the func-
tional organization of a dedicated timing mechanism. The last section focuses
on the predictions generated by our study on learning and generalization of time
intervals that states that the timing mechanism is multimodal and that at least a
fraction of the neurons of the timing circuit should be tuned to different interval
durations. The last prediction is supported by neural network simulations.

2 fMRI of Temporal Processing

Functional brain imaging studies have yielded useful information about the struc-
tures that participate in time measurement. Numerous perceptual or motor tasks
using single or multiple time intervals in the hundreds of milliseconds range have
consistently found that structures like the striatum of the basal ganglia and the
supplementary motor areas are activated, regardless of the non-timing factors
involved in the task, such as the modality of the stimuli used to define the in-
tervals [3, 4, 5, 6, 7, 8, 9]. This has led some to conclude that the same structures
are always recruited for temporal processing in this range and that different
task features, such as the perceptual or motor nature of the task, or if single or
multiple intervals are involved, do not significantly modify which brain regions
are activated [10]. In this regard, it has been proposed that some interconnected
structures, like the dorsal premotor and supplementary motor areas, the basal
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ganglia and the thalamus, which are essential for movement planning and exe-
cution, also form a timing circuit [11, 12]. This is an appealing view, since time
perception and production go hand by hand while interacting with the environ-
ment. Indeed, various perceptual studies, using auditory [3,6,8], visual [7,9,13,14]
and tactile [10] stimuli have reported consistent activation of some or all of the
structures of this hypothetical timing circuit. Importantly, humans are not the
only primate species that has been investigated. A PET study by Onoe and
collaborators [15] using macaque monkeys trained to discriminate between two
visually defined time intervals found some of these areas, like the basal ganglia,
to be activated. This is a relevant finding, because it implies that these animals
can be good models for the neurophysiological study of timing.

However, these are not the only regions that have been reported to increase
their activity while timing. A relevant example is the cerebellum, a structure
known to have profuse connections with the neocortex. While a group of investi-
gators have reported activation of medial cerebellar structures [6] during timing
tasks, others have found activation in the lateral part of the hemispheres [13,16],
and still others have not reported their activation at all [3]. The cerebellar activa-
tion is regarded by some investigators as an evidence for its involvement in timing
but others propose that it may simply reflect its role in sensorimotor integration.
A similar example is the dorsolateral prefrontal and the inferior parietal cortices.
These structures have also been considered as candidates for a dedicated timing
network, albeit more frequently in the seconds range [9]. Some research groups
claim that the parietal and prefrontal cortices are activated because they are
important nodes in the temporal processing network. Nevertheless, since these
regions have important roles in attention and working memory, their activation
may reflect that these cognitive processes are needed to solve the tasks. Addi-
tionally, some of these studies have also pointed out that a bias seems to exist
towards the activation of right hemispheric structures [13], although results from
other studies can be considered as a challenge to such view [17].

Fewer studies have focused on interval production rather than perception, but
the majority has found again the supplementary motor area, the basal ganglia,
the thalamus and the cerebellum to be involved [5, 14, 17]. In fact, Bueti and
collaborators [14] directly investigated whether different regions were activated
for perceptual or for motor timing. They found that in both conditions the basal
ganglia and the cerebellum increased their signal, but a more complex network
that included the supplementary motor areas and the inferior parietal cortex,
was preferentially activated during production tasks. Finally, a recent meta-
analysis using an activation likelihood estimation algorithm on the data of 20
fMRI studies showed that when maps of both motor and perceptual tasks in the
sub-second range are displayed on a single template, the following overlapping
areas were detected: SMA, middle frontal gyrus (BA 6), IPL (BA 40), IFG, right
caudate and putamen, right insula and the posterior cerebellum [12].

Overall, these findings point out that no single brain structure can be con-
sidered as the sole responsible for time quantification. Furthermore, temporal
estimation can be viewed as the result of the interaction of multiple cortical and
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subcortical areas. However, there are some regions that consistently appear to
participate conforming the main core timing network that includes the supple-
mentary motor area and the basal ganglia, while others are not that consistent,
like the cerebellum, the dorsolateral prefrontal cortex, and the inferior parietal
cortex. Other structures may also be recruited depending on particular task de-
mands such as the primary sensory cortical areas. Nevertheless, the functional
imaging literature does not support the notion that the representation of time
could be ubiquitous, arising from the intrinsic dynamics of non-dedicated neural
mechanisms, as suggested by modeling studies [18,19,20]. Thus, these results can
begin to shed light on our main question. While there’s no unique brain clock,
some of its structures definitely seem to conform a partially distributed timing
network devoted to the scale of hundreds of milliseconds.

3 Psychophysics of Temporal Processing Across
Behavioral Contexts

We have addressed these issues in our laboratory by testing human volunteers
on different perceptual and production timing tasks [21, 22]. In order to study
the effects of factors other than timing on the performance variability of human
subjects we designed four tasks that differed in their sensorimotor processing, the
number of intervals, and the modality of the stimuli used to define the intervals
(Fig. 1). Importantly, in all the tasks the subjects temporalized their behavior
in the range of 350 to 1000 ms. Using these factors we could group the tasks
as follows: If timing was required for the guidance of movements, they were
classified as time-production tasks, whereas time-perception tasks were those
in which perceived intervals had to be compared. Depending on the number of
time intervals being produced or compared, they could be categorized as single
or multiple-timing tasks. Finally, the stimuli used to cue the subjects could be
either visual or auditory [21].

Two tasks could be considered as perceptual. In the time interval Discrim-
ination Task (Dis), subjects were presented with five stimuli that created four
isochronous base intervals which were immediately followed by a sixth stimulus
that produced a comparison interval. This could be shorter or longer than the
base and subjects had to tell which it was by pressing one of two keys on the
computer keyboard. The Categorization Task (Cat) had two phases, training
and execution. In the training phase, two single intervals were presented to the
subjects, an extremely short one and an extremely long one. After 20 trials were
performed in this fashion, subjects were presented with six intermediate inter-
vals additionally to the trained ones and subjects were instructed to categorize
them as short or long using the prototypes acquired during training (Fig. 1).

In the other two tasks, time intervals were produced with movements. The
Multiple Tapping Task (MTap) consisted on producing multiple isochronous
intervals by tapping on a button. The first intervals were produced in synchro-
nization with stimuli, which were immediately eliminated after the completion of
four intervals and the subjects had to produce four additional internally-timed
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Fig. 1. Timing tasks. Five timing tasks, performed with auditory or visual interval
markers, were used to evaluate the influence of four factors on timing performance:
explicit vs. implicit, visual vs. auditory modality, single vs. multiple intervals, and
perception vs. production of the intervals. Modified from [21,22]

intervals. The second production task, named Single Tapping Task (STap) had
also two phases, instruction and execution. In the instruction phase two stimuli
were presented sequentially, creating an interval that the subject was required
to reproduce by tapping twice in the push-button. After five instruction trials,
subjects did ten trials in the execution phase, in which no interval was presented
and only a go signal indicated the subject to produce the instructed interval
(Fig. 1).

An important feature of this study is that all subjects performed all the tasks,
which increased the ability to detect intra- and inter-task differences in the tem-
poral and non-temporal components of the behavior (Fig. 1). The first crucial
observation in this study was that in all tasks the temporal variance increased
as a function of the interval, following the scalar property of interval timing [23].
However, as it can be seen in Fig. 2, this relation differed across tasks and
modalities. Experimental psychologists have used different analytical strategies
to decompose the total variability of task performance into temporal and non-
temporal elements. Such methods include the Wing-Kristofferson model [24]
and the Slope model [25]. According to the Slope model, variability can be de-
composed into time-dependent and time-independent processes from a linear
regression between the variability and the squared interval duration. The former
correspond to the slope in the regression, since it is directly related with the
scalar property of interval timing, and the latter to the intercept. The inter-
cept can be associated with the inherent sensorimotor and memory components
of a particular task, which are constant across all the processed interval dura-
tions [25]. We used this analysis to test the difference in time-dependent vari-
ability between the tasks and found that perceptual, visual and single interval
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different tasks in the auditory and visual conditions. Taken from [21].

tasks had significantly larger slopes than the production, auditory and multiple
tasks (Fig. 2). These results have at least two interpretations: whether differ-
ent mechanisms are being used for each task and modality or a common timing
system is being modulated by the nature of the task.

We reasoned that if a common timing mechanism was being used to solve all
the tasks, then a subject with small timing variability in one task would also have
small variability in the other three behavioral paradigms [26]. Consequently, we
performed a correlation analysis to compare the performance variability of each
subject between pairs of tasks for all interval durations. Indeed, the results are
graphically presented in Fig. 3 and show that subjects’ performance showed a
complex set of significant correlations between many tasks, with consistent cor-
relations between the same task across modalities. These data cannot be inter-
preted as evidence for multiple timing mechanisms specific for each task context,
nor as evidence for a common timing mechanism that functions equally every
time a subject quantifies time. Hence, in concordance with the neuroimaging ob-
servations, we suggest the existence of a partially distributed timing mechanism,
integrated by main core interconnected structures such as the cortico-thalamic-
basal ganglia circuit, and areas that are selectively engaged depending on the
specific behavioral requirement of a task. These task-dependent areas may in-
teract with the main core timing system to produce the characteristic pattern
of performance variability in a paradigm (Fig. 2) and the set of intertask corre-
lations described in Fig. 3. Nevertheless, a precautionary note is in place here,
since significant correlations could also be due to common individual cognitive
strategies across many tasks.

In the tasks described above time was explicitly present. However, it has been
shown that timing variability differs depending on the temporal goals of the task
and whether time is guiding behavior directly or if it is an emergent property of
the actions [1]. To tackle whether our explicit timing tasks differed from a task
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Fig. 3. Correlation matrix showing the Pearson R value in a grayscale (inset, bottom
left) for all possible pairwise task comparisons. Asterisks indicate significant correla-
tions (P < 0.05) between specific pairs of tasks. Open and closed fonts correspond to
tasks with auditory and visual markers, respectively. Modified from [21].

where time processing is covertly present, we tested the same group of subjects on
a Circle Drawing (CirD) task. This task has been regarded as an implicit-timing
task, since the kinematic properties of continuous drawing can generate temporal
behavior without engaging a neural explicit-timing clock [27]. By manipulating
a joystick, subjects controlled the position of a cursor displayed in a monitor
and were required to draw a circle following a path of 5 cm of diameter with it.
Importantly, subjects were instructed to attempt to pass the cursor through a
window in the path in coincidence with the presentation of isochronous auditory
or visual stimuli. Once the subjects drew four circles, stimuli were extinguished
and four additional circles had to be drawn at the same rate. Hence, the CirD task
has the same structure of the MTT but instead of tapping, subjects continuously
drew circles in a rhythmic fashion (Fig. 1).

With the subjects’ performance variability we constructed a 9x9 dissimilarity
matrix, which quantifies the distances in variability between all pairs of tasks
[22]. This matrix was initially used for a hierarchical clustering analysis. This
analysis accommodates the tasks in a representative spatial configuration known
as dendrogram, which reflects how much of the variability in one task is related
to the variability in the others. The clustering pattern we obtained is depicted in
Fig. 4A and shows three important relationships between the tasks. First of all,
the only implicit timing task we tested, circle drawing with both modalities, is
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Fig. 4. A. Dendrogram for the temporal variability in the five tasks with both marker
modalities, auditory (A) and visual (V). B. Two dimensional representation of the
performance in the same tasks using multidimensional scaling analysis. Modified from
[22].

isolated from the rest of the tasks that require explicit timing. Second, the two
single interval tasks (STap and Cat), again with both modalities, are separated
from the two multiple interval tasks by the next big branch. Finally, the same
tasks with the different modalities are clustered together. The number on the
top of the figure is the probability that each tree ramification was a random
event. All the branches have a chance likelihood of p < 0.05.

Finally, we performed a multidimensional scaling analysis, a method that
reduces the dimensionality of a data set, in our case the dissimilarity matrix, to
create a two or three dimensional representation of the complex relation between
the data. In this way we can obtain the most important underlying dimensions
of our data set [22]. Fig. 4B presents our results, where it can be seen that the
most important dimension, the abscissa, again separated the circle drawing task
from the rest, whereas the second dimension, the ordinate, separated single from
multiple interval tasks. Thus, explicit and implicit timing, as well as cyclic or
multiple and single interval tasks generate clear differences in performance. The
statistical significance of our results is less than 0.0087.
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The results of these psychophysical comparisons suggest that the neural un-
derpinnings of implicit timing is different from the dedicated mechanism for
explicit timing. Indeed, the performance dissociation of explicit and implicit tim-
ing in repetitive tapping and drawing tasks has been meticulously documented
using correlation [1, 27, 28] and slope [29] analyses. For example, the temporal
consistency during a continuous circle drawing task (very similar to our circle
drawing) is not correlated with the timing variability during multiple interval
tapping, discrimination, or a task where circle drawing is intermittent [1, 27].
Therefore, it has been suggested that the neural mechanism for implicit timing
depends of the motor and premotor areas that control the kinematic properties
of continuous rhythmic movement behaviors, such as the circle drawing task, and
is not quantifying the passage of time but controlling the velocity of the contin-
uous movement [28]. The present results also showed an important segregation
in the performance variability between single and multiple interval timing. This
suggests that the activation of a cyclic pattern of behavior not only confers an
advantage regarding temporal variability and accuracy in multiple interval tasks
as reported before [21,25,30], but also may engage a distinctive neural substrate
that can be discriminated from the single interval mechanisms using multivariate
analytical approaches. Finally, the marker modality did not create superordinate
dimensions in the resulting MDS axes. These results are at odds with studies
showing that, in both perceptual and production tasks, visual stimuli produce
more variable time estimates than auditory ones [21,31,32]. However, our present
MDS results may reflect the fact that the explicit-implicit and number of timed
intervals functional distinctions are more important than the task modality. In
fact, the dendrograms obtained (Fig. 2), which showed a more comprehensive
picture of the grouping between behavioral parameters, demonstrated the rele-
vance of task modality.

Our results are in close agreement with those of the neuroimaging literature.
They imply that the brain may use some common resources for explicit timing
in the hundreds of milliseconds range, but that there are factors that can mod-
ify the processing of these intervals, probably by recruiting different structures
depending on behavioral constrains. Future studies could measure the changes
in the intensity of BOLD signal as a function of some of the mentioned non-
temporal factors and the range of intervals that we used, and thus could help
in the clarification of these issues. Indeed, multidimensional statistics could be
used in order to test whether the structure of the multi-task temporal variability
observed in our studies can be replicated using the changes in both the timing
circuit configuration and the magnitude of the BOLD signal across brain areas.
Needless to say that through neuroimaging and psychophysical studies we can
only speculate about the cellular mechanisms behind time quantification. These
mechanisms can be addressed with neurophysiological studies that have the spa-
tial and temporal resolution needed to determine the neural codes behind time
quantification. Some laboratories, including our own, are beginning to investi-
gate this interesting problem in behaving non-human primates, that seem to be
a promising animal model for this research area [33, 34, 35].
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4 Contribution of Learning Studies to the Knowledge of
Timing Systems

Learning experiments have been another useful tool, although indirect, for the
study of different cognitive processes including temporal processing. The char-
acterization of the properties of learning can provide important insights about
the neural underpinnings of the behaviors being studied. The changes in be-
havior induced by training in a controlled context are informative per se, but
if we also assess changes in non trained conditions, varying the behavioral con-
text in a systematic way, we can get important additional information about the
organization of the underlying neural systems.

Several studies have shown that timing can be improved by practice [36, 37,
38, 39, 40, 41]. In addition, most of these studies have also shown that these
improvements can generalize to other timing behaviors. Thus, in this section
we review the findings of timing learning-generalization literature including our
recent experiment on the matter, which explored other information processing
properties of the timing system engaged in the hundreds of milliseconds scale.

The rationale of the learning approach is the following. Let’s imagine a net-
work that processes the gray level of a visual stimulus, and that this network
has to discriminate a specific gray level (50%-black) from a gradient ranging
from 10% to 100%-black, producing a categorical output-signal every time that
50%-black is presented to the network (Fig. 5A). Then, let’s assume that this
network is able to perform this function from the beginning with a certain pre-
cision degree, giving an incorrect output in some trials. Next, we can train the
network and produce an increase in its precision for the 50%-black stimulus,
promoting a change in the network dynamics every time the output is incorrect
while reinforcing correct responses. Finally, after training we can evaluate the
precision for the discrimination not only for the 50%-black trained stimulus but
also for the complete gray-gradient. This strategy allows to test whether the
processing of other gray levels can also profit from the training, suggesting a
functional overlap in how the network responds to the trained and non-trained
conditions. We would expect that the discrimination errors will decrease with
training, producing an output discrimination function that will be more precise
for the gray levels surrounding and including the 50%-black, compared with the
initial behavior of the network (Fig. 5A). Thus, these effects give us an idea of
how the network processes information around the trained parameter, as well as
its processing limits. This strategy is followed frequently in the artificial neural
network literature. In the specific case of timing, an improvement in time percep-
tion induced by training would generalize toward untrained conditions if the time
information is processed by the same network. Thus, the amplitude of the gener-
alization window will be determined by the processing capabilities of a dedicated
timing network under different timing contexts, which is another psychophysical
tool to address the problem of one or multiple clocks, discussed above.

One of the first timing studies that used this approach reported a gradual
improvement in a temporal discrimination task across a series of practice ses-
sions [36]. Human subjects were requested to discriminate a standard interval,
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Modified from [44].

delimited by two tones of a given pitch, from comparison intervals in order to
estimate the discrimination threshold. It was observed that the threshold grad-
ually decreased with training, and that the total decrease of the threshold was
statistically significant. Additionally, the subjects were tested in non trained
conditions, in which the frequency of the tones or the duration of the standard
interval were changed. Interestingly, it was observed that the learning effect was
transferred to the discrimination of time intervals defined by stimuli with differ-
ent pitch. However, there was no transfer of learning to standard intervals with
different durations [36]. These results revealed that the temporal features are
extracted from the auditory stimuli independently of the frequency, and suggest
that a common timing network is recruited for time processing regardless of
features of the auditory stimuli. On the other hand, the results also imply the
existence of interval specific networks, since no learning transfer was observed
between the durations of the trained and non-trained standard intervals. It has
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been suggested that the learning transfer depends on the improvement of tem-
poral processing and not on more efficient memory or decision processes, at least
for auditory interval discrimination [40].

In confirmation to the previous study, it has been observed that learning
induces an improvement in the discrimination of intervals delimited by tactile
stimuli, and that this learning generalizes: (1) across untrained skin locations on
the trained hand, (2) to the corresponding untrained skin location in the con-
tralateral hand, and (3) to a timing discrimination task of auditory stimuli [37].
The learning transfer in this study occurs again only in the trained duration [37].
In addition, it has also been observed that intensive learning in a time percep-
tion task can cause an improvement in a motor timing task that is restricted
to the trained duration, suggesting that motor and perceptual timing share a
common neural substrate, and that this substrate is duration-specific [39, 41].
The learning transfer from a perceptual to a motor task has been demonstrated
with auditory [39] and tactile [41] interval markers, emphasizing the multimodal
nature of the timing mechanism.

On the other hand, some studies suggest that early sensory areas play an
important role on temporal processing. For example, it has been shown that
learning to discriminate temporal modulation rates was accompanied not only
by a specific learning transfer to a temporal interval discrimination (and not
to a frequency discrimination task), but also by an increase in the amplitude of
the early auditory evoked responses to trained stimuli [42]. This learning induced
enhancement of early bilateral auditory evoked responses occurred in conjunction
with an increase in the power of gamma oscillations in the inferior frontal cortex,
suggesting that plasticity is not confined to auditory cortices and rather engages
a distributed timing network [42]. Furthermore, a recent TMS study reported
that the disruption of the auditory cortex impaired not only time discrimination
of auditory stimuli but also impaired that of visual stimuli to the same degree.
In contrast, TMS over the primary visual cortex impaired performance only
in visual time discrimination. These asymmetric contributions of the auditory
and visual cortices in time perception may be explained by a superiority of the
auditory cortex in temporal processing [43]. Hence, these studies emphasize the
role of sensory areas in time quantification, showing that auditory areas have a
privileged status on temporal processing.

Overall, these studies support the idea of a common timing network that has
access to multimodal information, with no topographical organization in the au-
ditory (frequency based) or somatosensory (somatotopic organization) modal-
ities, and that shares resources during time perception and time production.
Therefore, this area of timing research also confirms our hypothesis of the exis-
tence of a partially distributed timing circuit, where the core network is affected
by sensory areas in a context dependent fashion. In addition, these studies show
a consistent duration specificity in the learning transfer of timing abilities, which
suggest that timing neurons in the partially distributed timing circuit should be
tuned to interval durations with relatively sharp tuning curves.
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Regarding the latter point, the studies that have reported no learning gen-
eralization across interval durations have tested intervals with very different
magnitudes (more than 50% of the trained interval), and, therefore, their sensi-
tivity to measure learning transfer in the temporal domain has been low. Hence,
one of the questions we had was whether the hypothetical groups of cells that
are tuned to different interval durations show sharp or broad tuning curves, and
whether the specificity of interval tuning depends on the magnitude of the pro-
cessed interval. In order to study the learning of motor timing and the transfer of
learning in the time domain, we designed an experiment in which several dura-
tions surrounding a standard interval (Fig. 5B) were used as targets in the Single
Tapping Task (STap), described in the previous section (Fig. 1). Three groups
of human subjects were submitted to extensive training (8 days) in one out of
three standard Inter-Stimuli Intervals ([ISI] 450, 650 or 850 ms). The subjects
completed 60 blocks of trials per day, and each block consisted of 5 instruction
trials plus 15 execution trials (900 execution trials per day) using only the stan-
dard interval delimited by auditory stimuli [44]. With the purpose of evaluating
the transfer of learning across intervals, the performance variability (standard
deviation of the produced intervals) of a set of seven target ISI’s was assessed
using auditory and visual marker stimuli independently, before and after train-
ing (Fig. 5B). Therefore, this design allowed us to evaluate the transfer of motor
timing learning across different intervals and modalities [44].

The first finding in our study was that human subjects showed a learning
process for motor timing (Fig. 6). Learning was manifested as a gradual reduction
in performance variability across training sessions, describing a decaying function
similar to those observed in perceptual timing tasks [36, 37, 40, 45]. In fact, we
found a significant decrease in intertap variability during the execution phase of
the STap across training days (ANOVA, p < 0.01). In addition, we studied the
learning dynamics for each subject by fitting the following power function:

SD = bT m (1)

where SD is the Standard Deviation of the produced intervals (dependent vari-
able), T is the training day (independent variable), m is the time constant
(slope) of the function, and b is the intercept, an estimate of the initial value
of the curve. We found a significant difference in the intercept b but not in
the slope of the power function across trained intervals. These results suggest
that the initial value of the curve follows the scalar property of interval timing
with a larger variability for larger interval magnitudes, a finding expected from
the results reported above. In addition, our findings suggest that the learning
dynamics is independent of the trained interval.

The next step was to characterize the transfer of learning in the temporal
domain (transfer towards untrained intervals) and between sensory modalities.
To this end, we constructed transfer curves where the difference in temporal
variability before and after training (Pre-test - Post test) was plotted as a func-
tion of the interval magnitude. In addition, we performed one-sample t tests
to determine whether the variability reduction was significantly different from
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Fig. 6. Learning curves for motor timing. SD (mean ± SEM) of the produced intervals
plotted as a function of the training day (T1-T8). Filled circles, crosses, and open
circles are data for 450ms, 650ms, and 850ms, respectively. Lines are predicted curves
from the fitting to a power function. Modified from [44].

zero for each interval. A clear transfer of learning was observed within the time
domain for the three different trained intervals (Fig. 7). However, the general-
ization pattern (e.g. the intensity of transfer across intervals or modalities) was
different for different trained intervals, as follows. For the trained interval of
450ms, we observed a strong generalization of learning only for intervals close
to 450ms, whereas for the trained interval of 850ms we found a large learning
transfer across a wide range of interval durations. The generalization pattern for
the trained interval of 650ms showed intermediate values in terms of magnitude
and interval spread; however, the transfer was less organized that the previ-
ous two intervals, with contiguous intervals showing inconsistent effects (Fig.
7). Interestingly, the transfer pattern was cross-modal across the three trained
intervals. Although subjects were trained using only auditory stimuli, significant
improvements were observed for the visual modality.

We performed Gaussian function fittings to the generalization patterns in Fig.
7. High coefficients of determination (R2) were observed for the transfer curves
of 450ms and 850ms, as it would be expected for an organized, gradually de-
creasing transfer of learning. In contrast, for the 650ms standard a low R2 was
found, in concordance the scattered pattern revealed by the t tests. More impor-
tantly, we found that the amplitude of the Gaussians (at the half height) showed
a linear increase with the duration of the standard interval, following the scalar
property of timing. Finally, the peak of the curves (the mean) was not centered
on the trained interval, showing a bias between modalities. Indeed, the bias in
the transfer functions might be related to the fact that auditory stimuli tend to
be judged longer than visual stimuli [31,46]. Overall, these findings give indirect
support for the presence of two important properties of the brain network in-
volved in time quantification during the execution of the STT. First, at least a
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post-training SD) is plotted as a function of the difference of the target interval with
respect to the trained standard. Gaussian fittings were applied to the data and the
coefficient of determination (R2) is showed for each fitting. Taken from [44].

group of neurons in the timing circuit may be tuned to interval durations. The
tuning curves of such neurons probably show an increase in tuning dispersion as
a function of the preferred interval. This increase in tuning specificity could be
one of the neural correlates of the scalar properties of interval timing [47]. Fur-
thermore, our results give additional support for the existence of a multimodal
timing circuit that shows a bias towards auditory stimuli (see also Figures 2 and
4). The asymmetrical effects of auditory and visual stimuli on temporal process-
ing are probably due to the privileged access of auditory information [42,43,48]
to the core timing network. During intensive learning, however, it is possible
that not only the auditory areas but also part or the entire main core timing
structures are subjected to plastic changes that increased their information pro-
cessing [42]. Hence, the complete generalization from the auditory to the visual
condition observed in our data could be the result of plastic changes in the main
core explicit timing network.

The inconsistent transfer of learning for the 650ms standard is very peculiar
and should give us a hint about the organization of the duration-specific or tuned
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neuronal populations. Previous studies have shown that the preferred (unpaced)
tapping rate of humans has a bimodal distribution, with peaks around 270ms
and 450ms [49,50]. In addition, a language timing study showed that the distri-
bution of pauses between phrases or paragraphs has also a bimodal distribution
with peaks around 400ms and 1200ms, and where the intervals between 600ms
and 750ms are the less frequent [51]. Hence, the interval of 650ms could be a
duration that is not processed in a common fashion. Based on this evidence we
can speculate that the properties of the timing network are shaped by the oc-
currence of the intervals present in our everyday life, so that the neurons that
are tuned to interval durations show a distribution of preferred intervals that
reflects the most common processed durations. Thus, we predict that the num-
ber of cells with preferred intervals around 650ms should be smaller than the
cells with preferred intervals around 450ms and 850ms. An additional thought
is that the sculpting of the preferred interval distribution by the environmen-
tal temporal patterns should be limited by the innate properties of the timing
mechanism, in such a way that our abilities to quantify time across behavioral
contexts should depend on the interaction between these two phenomena.

5 Interval Tuning Properties of an Artificial Neural
Network

Previous neural network studies have suggested that neural circuits with dy-
namical changes in their excitatory-inhibitory interactions are able to process
temporal information [18, 19, 52]. Consequently, in order to test some of the
tuning properties of timing cells predicted by the previous learning and gener-
alization study, we simulated a recurrent neural network. This neural network
model was constructed using integrate-and-fire (I&F) units that are simple mod-
els of the electrical behavior of a single neuron. The I&F units are characterized
by their passive integration in the subthreshold voltage range and the generation
of stereotypic spikes above threshold [53]. In addition, we modeled three differ-
ent time dependent properties of the postsynaptic integration: the paired-pulse
facilitation of monosynaptic excitatory postsynaptic potentials (EPSPs), paired-
pulse depression of fast inhibitory postsynaptic potentials (IPSPs), and the slow
IPSPs produced by the activation of GABAb receptors (Fig. 8A). This network
included 400 excitatory units and 100 inhibitory units, with a 20% of random
recurrent connectivity and has a similar structure of the network reported by
Buonomano in 2000 [18] (Fig. 8B). We used as input stimuli the same intervals
included in the generalization experiment in humans: 450, 650, and 850 ms. In
fact, two short bursts of activity separated by these durations were used to sim-
ulate the input intervals. In addition, we used a layer of perceptron units with
backpropagation learning as the reading output of the network. The perceptron
layer was connected to the excitatory neurons of the recurrent network and in-
cluded 3 perceptron units, each associated with the discrimination of our tested
intervals (450, 650 and 850 ms; Fig. 8B).

It is important to clarify that this neural network was designed to understand
some basic principles of interval tuning in the hundreds of milliseconds range
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The recurrent neural network is composed of 400 excitatory and 100 inhibitory I&F
neurons, with a 20% random connectivity. A layer of perceptron units with backprop-
agation learning was used as a reading output. We have 3 perceptrons corresponding
to intervals 450, 650 and 850ms, which received inputs from the excitatory neurons of
the recurrent network.

and how these tuning mechanisms could explain the patterns of generalization
observed in our experiments. Hence, we are assuming that tuning is an impor-
tant element used by the main core timing network to encode explicit temporal
information. We are not addressing the multimodal or context-independency of
interval tuning with these simulations. In fact, we are currently implementing
a more sophisticated neural network in order to test how the main core timing
areas can generate the scalar property of interval timing and how the specific
areas that are engaged depending on the behavioral constrains can produce, in
conjunction with the core areas, the patterns of temporal variability observed
in the multitask and the learning-generalization studies. Seminal modeling work
has suggested that an ubiquitous [19,54] or a centralized timing mechanism, like
the Striatal Beat Frequency (SBF) model [55], can explain a range of temporal
behaviors.

Interestingly, we found that the recurrent network was able to show interval
tuning, characterized by selective neural responses to pairs of input stimuli sep-
arated by a particular duration (see the inset of the left panel of Fig. 9A). The
tuning specificity depends on the weights of the set of inhibitory and excitatory
inputs, as well as the time dependent properties that these inputs produce on the
tuned cells. Changing systematically the weights of the excitatory connections
with paired-pulse facilitation, as well as the weights of the GABAb connections
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Fig. 9. A. Left panel : Synaptic map of the efficacy of GABAb connections (ordinate)
and excitatory connections (abscissa) to excitatory neurons in response to pairs of
input pulses separated by 450 (black dots), 650 (dark gray dots), or 850 (light gray
dots) ms. Thus, depending of the strength of synaptic weights the excitatory neurons
respond selectively to inter pulse intervals. The inset panel shows an excitatory neuron
that responds selectively to 850ms due to the specific combination of input weights.
Lines show the threshold for the interval specific response to the second input pulse
stimulus. Black line: 450ms, dark gray line: 650ms, and light gray line: 850ms. Right
panel : Probability of correct classification by perceptron units to inter pulse interval
ranging from 350 to 950 ms. B. The same than A but with a synaptic map configuration
that does not include the weights for the 650ms selective responses.

to the excitatory cells of the network, we were able to determine a synaptic
space where different interval specificities were produced (Fig. 9A, left panel).
For example, when both the excitatory and the GABAb inputs weights are high,
the circuit produces tuned responses to the 850ms interval. In contrast, when
the excitatory weight is moderate, and the facilitation of the excitatory input
over-weights the GABAb low input, the circuit shows a selective activation for
the 450ms interval (Fig. 9A, left panel).

Initially, we tested the generalization pattern of the recurrent network using
a homogenous distribution of weights in the synaptic map (Fig. 9A, left panel).
The generalization function for each trained interval was obtained once the per-
ceptron layer was trained to discriminate that interval, and the network was
tested to a wide range of intervals without allowing for further learning. Indeed,
the right panel of Fig. 9A shows the probability of correct classification by the
perceptron units to interval durations ranging from 350 to 950 ms after the net-
work was trained to the 450, 650 and 850 ms intervals independently. It is evident
that the width of the generalization curve increased as a function of the duration
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of the trained interval, following the same organizations observed in the learn-
ing and generalization study in human subjects. Therefore, these results suggest
that interval tuning can be generated in the timing network through a combi-
nation of inhibitory and excitatory weights that show different time dependent
properties, such as paired-pulse facilitation of EPSPs, paired-pulse depression of
fast IPSPs, and slow IPSPs.

The learning transfer of the interval specificities in the recurrent network
showed similar properties observed in the generalization study of motor learning
in the STap task. However, an important difference in our network simulations
was that the 650ms trained interval showed a strong and systematic generaliza-
tion across neighbor intervals. In contrast, human subjects showed an inconsis-
tent transfer pattern for interval surrounding the trained 650ms interval. The
final question, then, was what is the configuration of weights in the synaptic
map that could produce generalization functions in the recurrent network that
follow more closely the results obtained in the human subjects study. After test-
ing different synaptic map configurations, we found that a synaptic map with
two discrete distributions of weights, one in the lower left quadrant of the map
(around the 450ms selective weight area), and another in the upper right quad-
rant (around the 850ms selective weight area; see the left panel of Fig. 9B),
produced generalization functions that were closer to the human timing perfor-
mance. In fact, the generalization functions depicted in the right panel of Fig.
9B show that the learning transfer for the interval of 650ms was smaller than
the 450 and 850 ms trained intervals. Therefore, these findings suggest that the
deficient learning transfer for the 650ms in human subjects could be due to a
decrease in the frequency of the synaptic weights that lead to the interval speci-
ficity to this duration. The decrease in the frequency of specific synaptic weight
combinations could be imposed by the occurrence of the intervals processed in
our daily life behaviors, as discussed in the previous section.

Overall, our simulation experiments showed that a recurrent network that
includes synaptic time dependent properties can produce interval selective re-
sponses with a pattern of generalization that was similar to the one observed
in the psychometric study in human subjects, with an increase in the width of
the generalization function as a function of the duration of the trained interval
and a dip in the transfer height for the 650ms interval. The latter effect can
be produced by a synaptic map that shows a strong bias towards the synaptic
weights associated with the tuning of the 450 and 850 ms intervals.

6 Concluding Remarks

Learning and generalization studies, including our own, provide evidence for the
existence of a dedicated general timing mechanism that has access to multimodal
information and is engaged in the perception and production of time intervals.
Furthermore, our multiple-task psychophysical studies suggest that these behav-
ioral parameters, together with the number of processed intervals, can influence
in a specific fashion the performance of the timing mechanism. These latter ob-
servations have refined our hypothesis, suggesting that time quantification in
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the hundreds of milliseconds depends on a partially distributed circuit of inter-
connected brain areas. In addition, our learning and generalization study gave
support to the notion that at least a fraction of the neurons of the time pro-
cessing neural circuit should be tuned to different interval durations, and that
the width of their tuning curves may increase as a function of their preferred
intervals. Artificial neural network simulations demonstrated that interval tun-
ing can be produced in a simple recurrent network that includes different time
dependent synaptic properties. Indeed, preliminary neurophysiological studies
performed in our laboratory on behaving monkeys, have shown that a portion
of neurons in the supplementary motor cortex are tuned to interval durations
during the execution of different timing tasks.
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