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Abstract

It has been argued that perception, decision making, and movement planning are in reality tightly interwoven brain
processes. However, how they are implemented in neural circuits is still a matter of debate. We tested human subjects in a
temporal categorization task in which intervals had to be categorized as short or long. Subjects communicated their
decision by moving a cursor into one of two possible targets, which appeared separated by different angles from trial to
trial. Even though there was a 1 second-long delay between interval presentation and decision communication,
categorization difficulty affected subjects’ performance, reaction (RT) and movement time (MT). In addition, reaction and
movement times were also influenced by the distance between the targets. This implies that not only perceptual, but also
movement-related considerations were incorporated into the decision process. Therefore, we searched for a model that
could use categorization difficulty and target separation to describe subjects’ performance, RT, and MT. We developed a
network consisting of two mutually inhibiting neural populations, each tuned to one of the possible categories and
composed of an accumulation and a memory node. This network sequentially acquired interval information, maintained it
in working memory and was then attracted to one of two possible states, corresponding to a categorical decision. It
faithfully replicated subjects’ RT and MT as a function of categorization difficulty and target distance; it also replicated
performance as a function of categorization difficulty. Furthermore, this model was used to make new predictions about the
effect of untested durations, target distances and delay durations. To our knowledge, this is the first biologically plausible
model that has been proposed to account for decision making and communication by integrating both sensory and motor
planning information.
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Introduction

When we need to arrive quickly to our work and we can choose

between two alternative routes, we rarely compare their specific

lengths. Rather, we categorize them as short or long routes.

Through categorization we mentally assign environmental stimuli

to groups whose members are treated similarly [1–5]. Thus,

categorization stands out as a process linking perception with

decision making and action selection. How is this implemented in

the activity of neurons? Among all stimuli living beings must

categorize for successful behavior, time stands out as one of the

most essential [6,7] and it has been shown that it can be encoded

in the increasing or decreasing ramping activity of cell populations

in different cortical areas [8–11]. Theoretically, based on these

activation profiles, subjects could decide to which duration

category an interval belongs and express this decision through a

motor act.

An issue that naturally follows is the relationship between

categorization difficulty and movement execution. Is there any

difference in a movement when the interval that elicits it is harder

or easier to categorize? Are movements always started once

categorization is finished? It has been argued that categorical

decisions may be arrived at either before or after the onset of the

movement that is made as a consequence of the decision [12].

Thus, subjects might follow two strategies: they might delay

movement onset until they are certain of their categorical decision

or, alternatively, they might begin a movement with a trajectory in

between both targets and decide while moving, modifying their

trajectory towards the selected target [13]. In turn, reaction time

(RT) and movement time (MT) would change accordingly,

informing about the strategy followed by the subjects.

There are, however, other factors that can impact on these and

other kinematic parameters independently of the categorization

process. For example, the distance between potential reaching
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targets has a direct influence on RT, with slower movement onsets

when potential targets appear far from each other [14,15]. In turn,

MT increases with greater movement distances and smaller target

sizes [16,17] and varies with movement direction [18]. Movement

direction also modifies the trajectories and their acceleration-

deceleration profile: reaching movements made with a joystick

tend to be curved away from the body when performed in the

lateral plane and have abrupt speed changes, whereas movements

in the anterior-posterior axis tend to be straighter and have a more

uniform speed [17,19–21].

Although perceptual, cognitive and motor planning processes as

those described above are now thought to be implemented in

parallel by overlapped brain mechanisms [22,23], how this is

achieved has still to be described. Here we report the performance

of human subjects on a task that involved measuring the duration

of an interval, waiting 1 s for two reaching targets to appear, and

communicating a categorical decision about the interval by

introducing a cursor inside one of the two targets. Categorization

difficulty, the distance between the targets and movement

direction were varied independently to look for interactions

between these variables and the categorization performance, RT

and MT. Our psychophysical results were then used to look for a

model that replicated these critical behavioral data. We describe a

mutual inhibition network model that sequentially represented

stimulus quantification, working memory, decision making, and

response selection in its state without changing its connectivity. It

accurately reproduced subjects’ RT, MT, and categorization

performance. Moreover, it makes some testable predictions about

the effect of different intervals, distances between targets and

delays. Finally, this model has some strong implications about the

nature of information held in working memory, the moment in

which decisions are reached and how they are transformed into a

movement, which could be confirmed neurophysiologically.

Results

Behavioral results
Twenty human subjects completed three sessions of a temporal

categorization task in which intervals had to be assigned to a

‘short’ or ‘long’ category according to previously acquired

prototypes, as has been described in a previous report [24]. The

intervals were between 450 and 920 ms, with intervals near the

implicit central value being harder to categorize. Manipulating a

joystick, subjects communicated their decision by moving the

cursor inside a response circle representing their chosen category

(Fig. 1). Our aim was to study the influence that the duration of the

categorized interval had on the planning and execution of this

movement by measuring the Reaction Time (RT) and the

Movement Time (MT). To further understand MT variations

we also analyzed the movement’s Maximum Velocity, the Area of

its trajectory, the Number of Submovements and Decision

Changes (see Methods for parameter definitions). Since response

circles could appear in one of eight different positions around the

central circle, we also looked for effects of the Movement Direction

and the Angle of separation between these targets as these

variables have been reported to influence some of our studied

variables [14–21].

Categorization performance
As expected, performance, measured as percentage of catego-

rization errors per interval, was only affected by the magnitude of

the interval being categorized as assessed with a repeated measures

ANOVA with error percentage as dependent variable and the

categorized interval as factor (F(7,133) = 34.11, p,0.001). Inter-

vals near the implicit central value had more errors (Fig. 2A). On

the contrary, performance was not influenced by either the

Movement Direction (F(7,133) = 0.662, p = 0.637) nor the Angle

between the response circles (F(2,38) = 0.116, p = 0.885). We also

used the psychophysical difference threshold (Movement Direction

F(7,133) = 1.603, p = 0.167; Angle F(2,38) = 0.595, p = 0.548) and

the constant error (Movement Direction F(7,133) = 1.91 p = 0.106;

Angle F(2,38) = 1.611, p = 0.216) as dependent variables and the

Movement Direction and Angle between targets as factors with

equal results. This implies that neither the direction of the

movement nor the angle between the possible targets modified

subjects’ categorical outcome (see Fig. 2A).

Stimulus magnitude
To study the effect of categorization difficulty on our execution

variables we carried out a repeated-measures ANOVA with the

categorized Interval as factor (see Dataset S1). All key parameters

showed significant effects for Interval, namely, RT

(F(1,133) = 19.2, p,0.001), MT (F(1,133) = 3.68, p = 0.005), and

Number of Submovements (F(1,133) = 2.73, p = 0.017), but not

Decision Changes (F(1,133) = 0.85, p = 0.48). This suggests that

categorization difficulty does not only affect the decision process

and the movement planning (RT), but also its execution (MT and

Submovements), with larger RTs and MTs for the intermediate

intervals that were harder to categorize (Figure 3A). An additional

two-way ANOVA with Interval and Outcome (correct or incorrect

categorizations) as factors, showed a significant main effect of

Outcome for RT (F(1,11) = 29.423, p,0.001), MT (F(1,11) =

5.761, p = 0.035), Number of Submovements (F(1,11) = 5.717,

p = 0.036), and Decision Changes (F(1,11) = 10.241, p = 0.008), as

well as an Interval6Outcome interaction effect for RT

(F(7,77) = 5.142, p = 0.002). In fact, subjects showed larger RTs

and MTs for incorrect trials on the extreme intervals (Figure 3A)

which were the easier to categorize, emphasizing their ability to

detect an error and, in some cases, correct their categorical

decision. Overall, these findings suggest that even after a delay

period of a second, the Interval and the categorical Outcome had

a large effect on RT and a smaller effect on the MT profile,

suggesting that the decision making and its translation to a motor

command were continuously being revised during these epochs.

Angle between targets
The angle subtended by the targets had a profound influence on

movement preparation and execution parameters (see Dataset S2),

except the Number of Submovements (RT F(2,38) = 11.99, p,

0.001; MT F(2,38) = 10.738, p,0.001; Area F(2,38) = 3.4,

p = 0.047; Maximum Velocity F(2,38) = 14.017, p,0.001; Deci-

sion Changes F(2,38) = 9.687, p = 0.002). As shown in Figure 3B, it

is evident that RT increased as a function of this angle, whereas

MT decreased. The Area, Decision Changes, Number of

Submovements and Maximum Velocity (Fig. 4B) evidently varied

in accordance with MT’s changes, as has been reported in other

studies [25,26]. This pattern can be due to subjects beginning their

movement before they reach a decision (shorter RT) and deciding

while they move (longer MT) as long as targets are close to each

other, since in this case a slight trajectory modification would be

enough to reach the desired target. Another explanation may be

that contiguous targets elicit a quick, although gross, representa-

tion of movements in their direction in motor circuits (short RT)

which are then refined for precision (long MT). Of course, these

two explanations are not mutually exclusive.

Categorization, Decision Making and Action Selection
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Movement Direction
Even though movement direction had no influence on

categorization performance, it influenced all of our variables

except the occurrence of Decision Changes (RT F(7,133) = 3.043,

p = 0.017; MT F(7,133) = 21.861, p,0.001; Number of Submove-

ments F(7,133) = 19.292, p,0.001; Area F(7,133) = 51.528, p,

0.001, Maximum Velocity F(7,133) = 71.963, p,0.001). A closer

inspection reveals a complex pattern, where the Area of the

trajectories was smaller for movements in the anterior-posterior

axis (90 and 270u; Fig. 2B), Maximum Velocity was greatest for

medio-lateral movements (0 and 180u) and more Submovements

were made in the posterior direction (270u). Although MT was

also clearly influenced by movement direction, none of the

aforementioned kinematic variables seems to solely explain its

profile and rather a combination of them may shape MT (Fig. 5).

Similar findings have been reported previously [27–30]; never-

theless, it is important to emphasize that the effect of movement

direction on kinematics is independent from the effect of the

perceptual and categorization processes that elicit the movement

described above. This is supported by the lack of significant

interactions between Movement Direction and Interval on any of

our variables as assessed with a two-ways ANOVA (p.0.1).

Furthermore, a Movement Direction x Angle between targets

analysis only revealed a significant effect on the number of

Decision Changes (F(14,266) = 2.64, p = 0.035).

Modeling
Overall, the previous results suggest that categorization and

decision-making processes are mixed-up with movement planning,

where time quantification, its assignment to a category, and the

evaluation of potential movements reverberate in the brain before

and during decision communication. We developed a neural

network model that aimed to replicate our results on key

behavioral parameters, namely subjects’ categorical performance,

RT and MT as a function of stimulus duration and outcome, as

well as the angle between the targets. This model included four

phases: 1) an information accumulation phase delimited by the

time elapsed between the two stimuli, 2) a delay in which stimuli

were stored in working memory, 3) a reaction time phase in which

the targets were presented and the movement that expressed the

categorical decision was prepared, and 4) a movement time phase

for the execution of the reaching movement to one of the targets.

Inspired by Machens et. al. [31], it implied the interaction between

two mutually inhibiting neural populations shaped to prefer one of

two categories, short (S) or long (L; Fig. 6A). These nodes were

modulated by independent excitatory inputs that varied depending

on the phase of the task, thus varying the network’s state, which in

turn represented time passage, temporary memory storage,

decision making, and movement execution (Fig. 6B–F). This

network configuration was able to replicate the categorical

performance, the effect of interval duration on RT for correct

and incorrect trials, as well as the RT and MT changes as a

Figure 1. Sequence of events in a trial of the temporal categorization task. Subjects had to judge if the interval between the first and
second stimulus belonged to the ‘short’ or ‘long’ category. They reported their decision by introducing the cursor inside the circle with an orange
outline if their decision was ‘short’ and inside the circle with a blue outline if their decision was ‘long’. Depicted in the last frame are the eight possible
positions that the response circles could adopt around the central circle. However, in a particular trial only the two response circles were visible.
doi:10.1371/journal.pone.0102553.g001
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function of the angle between targets (Fig. 7A–E), but could not

replicate the effects of interval duration on MT, particularly for

incorrect trials (Fig. 7F, Table 1). However, when we added

another pair of mutually inhibiting neural populations (ML and

MS) that kept in working memory the interval information, the

model accurately accounted for all of the aforementioned variables

(Fig. 8, Table 1).

During the interval presentation phase, the activity of L and ML

increased whereas that of S and MS decreased as a function of

interval duration, reaching a particular level at the end of the

phase (Fig. 6C), simulating the increasing and decreasing ramping

activity previously described in neurophysiological experiments

[8–11]. This level was maintained during the delay; however,

there was a decay in information as this phase advanced, showing

a tendency for the activity in all cases to reach the mean, as has

been observed empirically [32,33] (Figs. 6D, 9A, B). If the delay

period were extended, activity would ultimately reach this mean,

which would represent a correlate of forgetfulness. Once the

targets appeared, the answering phase began and this was

observed as a sudden increase of activity in L or S nodes, while

Figure 2. Psychometric performance of the subjects. A) Psychometric curves showing subjects’ performance on all movement directions. It is
evident that movement direction had no influence on the final categorical decision. B) Number of trajectories of all the subjects that went through
each pixel in the screen. Trajectories in the antero-posterior direction (90 and 270u) were straighter than other trajectories.
doi:10.1371/journal.pone.0102553.g002

Categorization, Decision Making and Action Selection
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ML and MS continued the maintenance of interval information in

the leaking working memory (Fig. 9C, D). Soon the activity in one

of the L or S nodes dominated and inhibited the other node. Thus,

the trajectory that described the network’s state was abruptly

driven towards one of two attractors during this RT phase

(Figs. 6E, 9A, B). Importantly, two downstream reading areas

(DRA), one for each category, integrated the output of their

corresponding nodes: DRAL computed the mean of L and ML’s

output, whereas DRAS did the same for S and MS (Fig. 6A, 9E, F).

These areas were also driven towards their corresponding attractor

and when one of them crossed a threshold, it triggered a

movement towards the target that represented its preferred

category (Fig. 6E). This threshold differed depending on the angle

subtended between the targets: thus, the narrower the angle, the

shorter the RT (Fig. 9E, F). Finally, the period between the

crossing of this threshold and the moment at which the

downstream area trajectory passed through a second and final

threshold (that was close to the attractor) was defined as the MT

(Fig. 9E, F).

In Figure 8A, the percentage of incorrect decisions of the

human subjects (black) and the complete model simulations (gray)

is plotted as a function of interval duration. It is evident that the

model explains almost perfectly the categorical performance of

human subjects (chi2-test (7) = 0.15, p,0.001). In addition, the

mean RT of the subjects is plotted together with the model’s RT

mean 6 SD across interval durations (Figure 8B correct and

Figure 8C incorrect trials) or for the three possible target angles

(Figure 8D). Again, the model can explain both the increase in RT

for the intermediate durations that are difficult to categorize, as

well as the linear increase in RT as a function of the target angle.

This latter observation suggests that the movement planning to

targets in opposite directions takes a larger time, as reported

previously [14,15,46–50]. Indeed, according to chi2-tests compar-

ing the RT distribution of the model with that of the subjects, the

model properly explained RT across correct categorization trials

(correct durations chi2-test (7) = 2.3, p,0.05; but not incorrect

durations chi2-test (7) = 6.1, p = 0.4) and across target angles (chi2-

test (2) = 0.02, p,0.001). Furthermore, we carried out regression

analyses between the predicted values of the model and the actual

subjects’ data, which showed that both correct and incorrect trials’

RT was accounted for by the model (Table 1) and the same was

true for the regressions made with the angle between the targets

(Table 2). Also, the MT observed in the model simulations follows

the concave shape of subjects’ MT as a function of interval

duration for correct trials (Figure 8E) and the convex shape for

incorrect trials (Figure 8F), and perfectly overlaps with the

humans’ decrease in MT as a function of target angle (chi2-test

(2) = 0.01, p,0.001; Figure 8G, Table 2), as well as for the correct

(chi2-test (7) = 0.09, p,0.001, Table 1) and incorrect interval

categorizations (chi2-test (7) = 0.9, p,0.001).

Figure 10 shows in detail the network dynamics during easy and

hard categorization trials and explains the differences seen in RT

as a function of interval and outcome. It can be appreciated that

the correct and incorrect trajectories are almost mirror images

Figure 3. Reaction and movement times. A) Mean RT and MT as a function of the categorized interval, with trials subdivided according to their
outcome. B) Mean RT and MT as a function of the angle between targets. Errorbars = 1 SEM.
doi:10.1371/journal.pone.0102553.g003
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Figure 4. Mean number of submovements, maximum velocity, area of the trajectories and percentage of Decision changes as a
function of interval duration (A) and angle between the targets (B). Errorbars = 1 SEM.
doi:10.1371/journal.pone.0102553.g004
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when the hard interval is categorized (Fig. 10 B), with RT

happening practically at the same long time. However, when the

easy interval is categorized (Fig. 10A), the incorrect trajectory

spends a significant amount of time in the source (or repulsion)

zone and then travels to the incorrect attractor, whereas the

correct trajectory promptly deviates to the correct attractor, thus

explaining the observed marked differences in RT.

Finally, we used our model to predict what would happen to the

performance, RT and MT if we test using more intervals, one

more angle between the targets, and different delay durations. As

seen in Figure 11A, our model predicts that performance would

become progressively worse for longer delay durations; the best

performance possible would be achieved if the delay were

completely removed. It can also be seen that shorter and longer

intervals than the ones presented to our subjects would be

categorized with fewer errors, as expected. Another interesting

prediction is that both RT (Figure 11B) and MT (Figure 11D)

would increase as a function of delay duration, particularly for the

shorter and longer intervals, potentially reaching an asymptote in

which all intervals would elicit the same RT and MT. These same

parameters were predicted to keep changing as a function of the

angle between the targets, as seen in Figure 11C, E in which a

separation of 135 degrees, which was not tested, is depicted.

Discussion

We tested human subjects in a temporal categorization task that

varied in difficulty and in which subjects had to move a cursor with

a joystick in different directions to communicate their decision.

The task involved several cognitive abilities: subjects had to

quantify the passage of time, decide if the interval belonged to the

short or long category, and select the corresponding target (Fig. 1).

Working memory was also involved since there was a 1 s delay

between interval presentation and decision communication,

forcing subjects to hold in memory the interval duration or the

categorical decision during this period. We mimicked our main

behavioral results with a model consisting of two neural

populations, each composed of two nodes, tuned to a preferred

category. These populations had independent excitatory inputs

that modulated their activity throughout the different task epochs

(Fig. 6A). Nodes accumulated temporal information in the form of

ramping activity, maintained that information in working memory

during the delay and then competed against each other to drive

the networks’ trajectory in their direction as an attractor, thus

representing a decision [34]. The model replicated subjects’

performance, as well as the RT and MT, as a function of the

categorized interval, the categorization outcome, and the angle

between the targets.

Numerous brain regions have been involved in the processing of

temporal information, but there seems to be a predominance of

the premotor and supplementary motor areas, the posterior

parietal cortex, the basal ganglia, and the cerebellum [35,36].

Moreover, neural responses related to temporal information

accumulation have been recorded in some of these areas. For

example, neurons in the posterior parietal cortex increased [8] or

decreased [11] their firing rate as the passage of time made a

saccade target in their receptive field more or less relevant,

respectively. Also, Merchant et al. [10] found that some neurons in

the medial premotor cortex, called time-accumulator cells,

Figure 5. Mean RT, MT, number of submovements, maximum
velocity and area of the trajectories as a function of movement
direction. Errorbars = 1 SEM.
doi:10.1371/journal.pone.0102553.g005
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increase their firing rates in a linear fashion as a function of

elapsed time after a movement was executed in a rhythmic tapping

task. Thus, in our model, temporal information was gradually

accumulated as an increase in the activity of one set of

independent neural populations (L, ML), which in turn inhibited

another one (S, MS). In this way, as the intervals became larger,

L’s- ML activity increased and S’s- MS decreased. This double-

coding strategy, in which the activity of two populations with

opposite ramps codes the same stimulus, has been shown to

increase the signal to noise ratio for perceptual decisions [37] and

has been recorded in timing tasks [9,10].

However, time sensation was not enough to solve this task:

information had to be categorized before a response could be

communicated. Theoretically, categorization could have taken

place as soon as the interval had been delimited, in which case the

information stored during the delay would have been the final

decision. Importantly, RT’s would be short and very similar in all

trials, since subjects would only need to transform their already-

made categorical decision into a movement command towards the

corresponding target. Alternatively, the decision could be

postponed until a response was prompted or even after response

onset, in which case the interval information would be the one

maintained during the delay. However, with this strategy RT’s

would vary as a function of the categorization difficulty and they

would be longer, since subjects would first need to make the

decision and then the appropriate sensorimotor transformations.

This second option is what our psychophysical results support

given that subjects’ RT and MT varied depending on stimulus

Figure 6. Mutual inhibition model for categorical decisions. A) A coupled system model composed by two groups of two mutually inhibited
nodes, where L and ML are tuned to large intervals and S and MS for short intervals. B) L nullcline as a function of response of S for different values of
EL (inset colorbar). Thick lines correspond to values used in stimulus, delay, RT, and MT phases. For the ML- MS network the same nullclines were used
except for the blue one, associated with the RT and MT dynamics. C–F) Stimulus, delay, RT, and MT phases respectively with their corresponding L
and S (first and third rows) or ML and MS (second and fourth rows) nullclines. For each figure, top panel shows input values EL and ES as shown in B
inset. Main panels show a single path for 450 ms (first row L–S; second row ML- MS) and 920 ms (third row L-S; forth row ML- MS) intervals. Horizontal
dotted lines specify the state of the network at the end of a task phase (left) and the beginning of the next phase (right). The filled circle indicates the
initial start of the network (t0). The black arrows indicate the point of intersection between the L and S (or ML and MS) trajectories, which correspond
to the sink in the dynamics of the mutually inhibited pairs. The arrows in magenta indicate the source associated with the repelling state of the
network. The parameters for the sigmoid function were M = 10 and s~1
doi:10.1371/journal.pone.0102553.g006
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categorization difficulty and trial outcome, even after the 1 s delay.

Indeed, a recent paper [38] reports that in monkeys performing a

vibration discrimination task in which decision communication

was postponed, more cells coded for the past stimuli than for the

final decision during the delay, although there is neurophysiolog-

ical evidence of both kinds of responses [39]. Thus, in our model,

it was the duration of the interval which was maintained

throughout the delay as a relatively stable state of the two

mutually inhibiting networks after information accumulation

ended. This kind of parametric maintenance of information in

working memory has been known for decades [40].

In fact, we also modeled the effect of untested intervals and

delay durations (Figure 11) on performance, RT and MT. While

the effect of easier-to-categorize intervals is quite as expected, with

progressively shorter and longer intervals having fewer errors, the

effect of different delays has strong implications: first of all, the best

moment to take a perceptual decision in this task is as soon as the

interval presentation ends. We are claiming that subjects

postponed their decision until they were prompted to answer,

Figure 7. Performance of the subjects and of the model without the memory and downstream reading units. (A) Performance of the
subjects (black line) and of the model without the memory and downstream reading units (gray line) as a function of categorized interval. (B) RT of
the subjects (black line) and model (mean, gray line; 60.12SD gray area) as a function of interval for correct trials. (C) RT of the subjects (black line)
and model (mean, gray line; 60.12 SD gray area) as a function of interval for incorrect trials. (D) RT of subjects (black line) and model (mean, gray line;
60.12SD gray area) as a function of the angle between targets. (E) MT of the subjects (black line) and model (mean, gray line; 60.12 SD gray area) as
a function of interval for correct trials. (F) MT of the subjects (black line) and model (mean, gray line; 60.12SD gray area) as a function of interval for
incorrect trials. (G) RT of subjects (black line) and model (mean, gray line; 60.12 SD gray area) as a function of de angle between targets.
doi:10.1371/journal.pone.0102553.g007

Table 1. Linear regression fittings for reaction time (RT) and movement time (MT) as a function of interval duration, with and
without the addition of the memory (M) and downstream reading (DRA) nodes.

With M and DRA nodes Without M and DRA

F p F p

RT Correct 37.43 0.00 29.70 0.00

RT Incorrect 61.70 0.00 129.77 0.00

MT Correct 50.29 0.00 5.82 0.05

MT Incorrect 3.00 0.13 0.36 0.57

doi:10.1371/journal.pone.0102553.t001
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holding interval duration in a leaking and increasingly uncertain

state. Thus, the longer the subject waits, the less reliable the

information he has to make a categorical decision. In hand with

this is the fact that the network’s state will take longer to reach one

of the two possible attractors, thus increasing RT for progressively

longer delays.

Once the targets were presented, separated from each other by

45, 90 or 180 degrees, subjects had to communicate their decision

by introducing the cursor inside the corresponding target. As

reported previously [14–18], the angle between the targets had an

effect on RT and MT, as well as on Decision Changes, such that

the narrower the angle, the shorter the RT, the longer the MT and

more Decision Changes occurred. In our model, when the targets

were presented the L-S network state was suddenly perturbed by

equal excitatory inputs to both nodes. Thus, if the previous state

was closer to L, it was attracted to this node with a greater force

than to S and vice versa. The downstream reading area added the

output of the two mutually inhibiting neural populations (Fig. 6A),

containing both the trajectory towards one of the attractor states

(L–S) and the parametric memory trace of the interval duration

(ML-MS) (Fig. 9). Once this area reached a RT threshold, the

movement was generated. Importantly, we incorporated three

different thresholds for movement onset that depended on the

angle between both targets: the narrower this angle was, the lower

the threshold was. This implied that, regardless of the magnitude

of the stimulus, RT was smaller and MT larger for targets that lied

close to each other. As shown in Figure 8, our model accurately

predicted RT, MT and Decision Changes as a function of the

angle between the targets. We think that this effect could be due to

two options that are not mutually exclusive: a) subjects had not

made a decision by the time the targets were presented and, if the

distance between them was short, they began moving early

without having decided (short RT) and decided while moving

(long MT), given that a minor trajectory change would be enough

to reach the selected target; b) a non-target lying close to a target

enhances a movement representation in their direction (short RT),

while a non-target far from a target represents a distractor, as has

been shown behaviorally [13–15,41–44] and neurophysiologically

[45]. For example, neural activity related to movement prepara-

tion varies depending on the angular separation between potential

reaching targets in monkey primary motor [46] and premotor

cortex [47] as well as in the human premotor, parietal [48] and

sensorimotor cortex [49,50]. In these reports, the measured signal

is observed to reach a particular value before and with greater

amplitude when target separation is smaller, a feature mimicked in

our model with the addition of the different movement onset

thresholds that varied with target angle. Needless to say, our results

Figure 8. Performance of the subjects and of the model with the memory and downstream reading units. (A) Performance of the
subjects (black line) and of the complete model (gray line) as a function of categorized interval. (B) RT of the subjects (black line) and model (mean,
gray line; 60.12SD gray area) as a function of interval for correct trials. (C) RT of the subjects (black line) and model (mean, gray line; 60.12SD gray
area) as a function of interval for incorrect trials. (D) RT of subjects (black line) and model (mean, gray line; 60.12SD gray area) as a function of the
angle between targets. (E) MT of the subjects (black line) and model (mean, gray line; 60.12SD gray area) as a function of interval for correct trials. (F)
MT of the subjects (black line) and model (mean, gray line; 60.12SD gray area) as a function of interval for incorrect trials. (G) RT of subjects (black
line) and model (mean, gray line; 60.12SD gray area) as a function of de angle between targets.
doi:10.1371/journal.pone.0102553.g008
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can’t discriminate between these options so further experiments

are needed to clarify this issue.

Finally, given that intervals that were harder to categorize lied

near the implicit interval and generated a state that thus lied

almost equally close to both nodes, they were more prone to be

attracted to the incorrect node than easier intervals, therefore

making errors more likely in these cases. As seen in Figure 8A, D,

performance was also well predicted by the model. Thus, this

relatively simple model instantiates our key variables and

represents a plausible biological mechanism behind perception,

decision and action. Although we are not claiming that it is

implemented in a particular area, it does imply that processes as

different as time estimation, working memory, categorization,

decision making and response selection might take place in a small,

albeit surely distributed, interconnected network, probably in the

motor system [6,51–54]. Furthermore, our critical variables, RT,

MT and performance are represented by one single variable,

namely, the state of this network [55]. Previous models [56,57]

have shown that both decision making and working memory could

be implemented in the same circuit in various ways but, to our

knowledge, none has incorporated movement related consider-

ations into it. However, the fact that neurophysiological activity

related to working memory and perceptual decisions has been

recorded in the same regions where motor preparation and

execution takes place makes our model a reasonable one. This also

supports the addition of nodes dedicated only to keeping stimulus

information in the form of working memory: as has been reported

from neurophysiological experiments, some neurons maintain

stimulus information during a delay before response selection [40]

and even during the response time [38], in dorsolateral prefrontal

cortex and medial premotor cortex, respectively. This activity

occurs while, simultaneously, other neurons code for other task

related variables [39]. In our model, the L–S network alone was

unable to replicate the effects of interval duration on MT, but with

the addition of both, another pair of mutually inhibiting neural

populations (ML and MS; which kept in working memory the

interval information) and of a reading downstream network, we

were able to simulate the perceptual and motor performance as a

function of interval, the categorization outcome, and the angle

between targets (Fig. 8).

Other models of sensory information accumulation and decision

making have been proposed to account for these processes [12]. In

fact, we also tested another decision-making model based on

information accumulation superimposed in a random walk

trajectory, in which a decision was made once a noisy trajectory

reached a decision boundary when biased by information (see

Methods). However, even though this model was simpler, it failed

to replicate our data as faithfully as the model we report here and

as seen for other tasks [58]. Overall, our psychophysical results and

the model we propose show that a relatively simple and

biologically plausible neural circuit can, when given some

preprocessed sensory data, accumulate and memorize this

information, categorize it and select an appropriate course of

action. In turn, its activity could be fed to motor circuits, thus

linking perception with movement execution.

Materials and Methods

Ethics Statement
The study was approved by the National Autonomous

University of Mexico Institutional Review Board. All procedures

complied with the Declaration of Helsinki.

Subjects
Twenty human volunteers (9F, 11 M; age 27.165.2 years

(mean 6 SD)) participated in this study. Subjects were verbally

informed about the general procedures and gave written consent

before commencement of experiments. Subjects were right-

handed, had normal or corrected vision and were naive about

the task and purpose of the experiment. The study was approved

by the National Autonomous University of Mexico Institutional

Review Board. All procedures complied with the Declaration of

Helsinki.

Apparatus
Subjects were seated comfortably facing a computer monitor

(HP 7540, 170Hz refresh rate) with the chin and the forehead

placed in a custom-made headrest that kept the subject’s eyes

approximately 56 cm from the center of the monitor. A joystick

(H000E-NO-C, CTI electronics, Stratford, CT, USA) was

manipulated by the subjects with their right hand to control the

position of the cursor. This joystick was fixed in a platform under

the desk, which prevented the subjects from seeing their own hand.

Task
Subjects were tested on a temporal categorization task that was

designed and programmed using Visual Basic (Microsoft Visual

Basic 6.0, 1998). This task has been described in detail elsewhere

[24]. Briefly, subjects were required to categorize as ‘short’ or

‘long’ eight different time intervals (450, 500, 619, 669, 709, 756,

Figure 9. Model Trajectories as a function of task epochs. Response of L (A), S (B), ML (C), MS (D), and the downstream reading areas DRAL (E)
and DRAS (F) to the intervals used in out categorization task. In E and F the trajectories were classified as long or short if they reached an initial
threshold that depended on the angle of separation between the targets (gray scale). MT is defined as the period that it takes for the trajectory to
move from the first (gray) to the second threshold (blue line). Trajectories are aligned to the beginning of the delay on the left side and to movement
onset on the right side.
doi:10.1371/journal.pone.0102553.g009

Table 2. Linear regression fittings for reaction time (RT) and movement time (MT) as a function of the angle between the targets
with and without the addition of the memory (M) and downstream reading (DRA) nodes.

With M and DRA nodes Without M and DRA nodes

F p F p

RT 6101.02 0.01 4524.60 0.01

MT 121260.12 0.00 242.43 0.04

doi:10.1371/journal.pone.0102553.t002
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870 and 920 ms) according to a previously acquired criterion. The

temporal sequence of a trial is depicted in Figure 1: Subjects were

required to introduce and maintain the cursor inside a 4u-diameter

central circle. After a variable delay (500+D1,000 ms), two parallel

bars (8u60.7u of visual angle) appeared briefly above the central

circle, disappeared for a particular interval (t), and reappeared in

the same position. Crucially, t changed from trial to trial and was

the variable that had to be categorized. After a 1-s delay, two

response circles appeared in the periphery of the central circle, one

with an orange outline and the other with a blue outline. Subjects

communicated their decision by moving the cursor to the orange-

outlined circle if their choice was ‘short’ or to the blue-outlined

circle otherwise. These response circles could occupy one of eight

possible locations around the central circle and in each particular

trial one particular combination of positions was randomly chosen

(see Fig. 1 bottom). In fact, we restricted response-circle positions

to 20 different combinations to restrict the angle subtended

between these circles to three values: 45, 90 and 180 degrees with

the center of the screen as the vertex. This also helped to balance

movement directions (an a posteriori Chi square analysis revealed

that there was no predominance of particular movement

directions, p,0.001). Importantly, this task design precluded the

formation of precise motor plans until the response circles

appeared on the screen and also allowed us to separate kinematic

and categorization-related effects.

The first 24 trials of each task were part of the ‘‘Training

Phase’’. In this phase, only the shortest and the longest stimuli

were presented in a random fashion, generating a mental implicit

value that would correspond to the stimulus midway between the

two extremes and would serve as a limit or boundary between

categories. The color of the stimulus bars matched the color of the

correct target, helping the subject to make a color-category

association. The words ‘‘correct’’ or ‘‘incorrect’’ appeared at the

end of the trial as feedback. The 160 trials that followed

immediately made up the ‘‘Testing Phase’’ in which the eight

values were presented randomly from trial to trial 20 times each.

Each value was presented once with each one of the 20 different

response-circle position combinations, with a randomized presen-

tation sequence. In this phase, the color of the stimulus bars was

always green, regardless of the stimulus category. No feedback was

given in this phase. Subjects performed three separate sessions on

different days, for a total of 480 testing phase trials.

Data analysis
Subroutines written in Matlab (MathWorks v. 7.6.0.324) were

used to obtain the kinematic parameters. We first projected all the

trajectories to a common direction (0 degrees) by subtracting the

angle of the chosen response target to each of the trajectory

samples. Then, we applied a low-pass Butterworth filter with a

cutoff frequency of 20 Hz and a Kalman filter. From these

projected and smoothed trajectories we obtained the movement-

related parameters described below. The SPSS statistical package

(version 12, SPSS, Chicago, IL) was used for the statistical

analyses, in which the level of statistical significance to reject the

null hypothesis was a= 0.05. The analyses were conducted only on

the data of the Testing Phase.
Reaction Time (RT), Movement Time (MT) and

Maximum Velocity. We first defined the beginning and the

end of the movement towards the target as the moment in which

velocity went above and below 10% of the maximum velocity

Figure 10. Network’s trajectories for correct and incorrect trials. Mean paths of the network’s trajectories during correct (black) and incorrect
(red) categorization trials using the easiest short interval (450 ms, A) and the hardest short interval (669 ms, B). It can be appreciated that in ‘‘easy’’
trials (A), incorrect trajectories travel very close to the midline between attractors and remain there for a longer period than incorrect trajectories in
‘‘hard’’ trials (B), which are almost mirror images of the corresponding correct trajectories. This in turn explains the longer RT in incorrect ‘‘easy’’ trials
than in ‘‘hard’’ ones.
doi:10.1371/journal.pone.0102553.g010
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reached during the trial, respectively (Fig. 12B). Then, we defined

the RT as the interval between the appearance of the response

circles and movement initiation, whereas MT comprised the

interval between movement beginning and end. The Maximum

Velocity was defined as the highest velocity value reached during

MT.

Number of submovements. The third derivative of the

position, known as jerk, has long been considered as an important

kinematic variable and it has been argued that one of the goals of

the motor system is to minimize it during movement [59]. To

determine if the trajectory was composed of more than one

movement, we counted the number of jerk peaks within the

movement (Fig. 12B). The rationale behind our approach was that

if two or more peaks were found, this would imply that the subject

had decelerated and reaccelerated during the movement, thus

making a sub-movement.

Measures of trajectory curvature. The projected trajectory

was interpolated to obtain 100 evenly distributed points. A straight

line that joined the starting and ending points of this trajectory was

also interpolated with the same x coordinates as the interpolated

original trajectory (Fig. 12A). We then obtained the movement

area by integrating the area between these two curves. We also

calculated the absolute perpendicular distance between each

corresponding point of both interpolations. The maximum

distance was converted to degrees in polar coordinates and was

used to find decision changes as described below.

Decision changes. Finally, we calculated the angle at the

trajectory point in which the maximum deviation from the straight

line had occurred (Fig. 12A). This angle was then used to find

decision changes: any trajectory with an angle higher than half the

angle between the targets was considered a decision change.

However, when the angle between both targets was 180u, this

algorithm was no longer useful. In this case, we considered that if

the first 5 trajectory samples were negative, a decision change had

occurred. Typical examples of trajectories considered to have a

decision change are depicted in Figure 12C.

Independent variables. The six movement variables were

subjected to Repeated Measures ANOVAs with 3 independent

variables: 1) the position of the chosen response circle which

determined movement direction; 2) the angle subtended by the

two response circles, and 3) the categorized interval. The level of

statistical significance to reject the null hypothesis was a= 0.05

and we corrected for sphericity with the Greenhouse-Geisser

method.

Model
We used a mutual inhibition network model [31] to mimic our

most critical results. We used a simplified network model of

discharge rate neurons. The model is composed of two mutually

inhibiting neural populations, L{S, that represented the time

passage, temporary memory storage, decision making, and

movement execution; and ML{MS that only accumulated the

passage of time and its memory trace. Additionally, two readout

Figure 11. Model Predictions. Predicted performance (A), reaction time (B) and movement time (D) with new, untested intervals and delay
durations (see bottom for color codes). Also shown are the predicted reaction (C) and movement (E) times with an untested angle (135 deg) and the
untested delays.
doi:10.1371/journal.pone.0102553.g011
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units, Large and Short average the activity of L{ML and S{MS ,

respectively (Fig. 6A). The L{S population is instantiated by the

following equations:

t
dL

dt
~{Lzf EL{Sð ÞzNL

t
dS

dt
~{Szf ES{Lð ÞzNS

whereas the memory population by:

tm
dML

dt
~{MLzf EL{MSð ÞzNML

tm
dMS

dt
~{MSzf ES{MLð ÞzNMS

where t (155 ms) is a constant for time passage and was estimated

by minimizing the difference between the interval duration of

subjective equality (p = 0.5) in the simulation and the mean of the

presented intervals (687.5 ms). tm (500 ms) is a time constant for

memory storage, NL, NS , NML
and NMS

are white noise, and EL

and ES are the excitatory inputs to the L=ML and S=MS nodes,

respectively, which vary as a function of the task phase as depicted

in Figure 4B–F. The output function f is a commonly used

sigmoidal function (Fig. 6B) given by:

f xð Þ~M
1

2
z

atan
x

s

� �

p

0
@

1
A

where M is the maximum response of the node and s is the slope

of the sigmoidal function. Thus, this function represents how the

output of each node changes with its input. For L{S, Figure 6B

shows the activity of L as function of S and for different values of

EL. It can be observed that as S increases its inhibitory output to

L, L’s output decreases. Also, as the task phase changes, EL

changes as well, shifting the curve. The corresponding curve for S
as a function of L can be plotted with an axes rotation as shown in

Figures 6C–F (first and third row panels), where it can be noticed

that EL and ES change for the stimulus, delay and reaction phases

and determines interval quantification, memory storage, reaction

and movement time. Analogously, memory populations, ML and

MS are mutually inhibited as shown in Figure 6C–F (second and

forth row panels). Finally, the downstream reading areas (DRA),

one for each category, integrate the output of their corresponding

nodes: DRAL is the mean of the L and ML’s output, whereas

DRAS does the same for S and MS . We performed 10,000

simulations for every interval in order to estimate the model’s

categorical performance, as well as the RT and MT for correct

and incorrect trials. It is important to remark that only tm and the

thresholds associated with the definition of RT and MT were

adjusted, using the least-square method with respect to the

subjects’ RT and MT (Table 3).

We also tried to replicate our behavioral results by developing a

random-walk model. In this case, evidence is accumulated in a

node over time (as a diffusion process) until a lower BS or upper

BL bound is reached, which triggers the corresponding decision

process. During the presentation of the interval (I), the node

accumulates information over time with a mean drift m and

standard deviation s. In our task, both the m and standard

deviation s are the same across the categorized intervals.

Therefore, the mean response at time I is equal to mI and

standard deviation is equal to s
ffiffiffi
I
p

. The information accumulation

stops during the delay period, namely m~0, and the node simply

maintains the same mean response that was reached after

information acquisition. Finally, after target onset, the node

reaches one of the bounds, BS or BL. In our model BsƒmIƒBL,

which implies that both bounds and the trajectory of the node are

always positive, since time accumulation is always positive. From

Palmer et al. equation A6 [60], the probability of stopping at the

lower bound BS depends on the difference between the mean

response and each bound, with mI{BS and BL{mI for the short

and long bounds, respectively. When the drift rate is m~0, the

diffusion model allows for the estimation of the probability of

correct decisions as follows:

ps~
mI{BS

BL{mIð Þz mI{BSð Þ

where, ps is the probability of correct decisions for a short interval

(s). For our time categorization task this probability can be

rewritten as the following linear function:

ps~mIzb

Table 3. Threshold values for movement onset as a function
of the angle between the targets and for the end of
movement.

Angle Threshold

45u 0.61

90u 0.59

135u 0.56

180u 0.54

Movement 0.04

doi:10.1371/journal.pone.0102553.t003

Figure 12. Example of a trajectory to a response circle and its velocity and jerk profile. A) Real (black dotted line) and straight (gray
dotted line) interpolated trajectories from the central circle (left black-outlined circle) to the response circle (right gray-outlined circle). Both
trajectories share a common beginning and ending point and are composed of 100 equidistant points. The enlarged point in each trajectory signals
the place in which the largest distance between both trajectories lies, which is considered as the maximum angle of the trajectory. B) Velocity (black
line) and jerk (gray line) of the movement depicted in A). The two filled circles in the velocity trace signal the beginning and the end of the movement
and the open circle in the jerk trace signals the presence of one peak, implying that this particular trajectory had no submovements. The jerk has
been multiplied by an arbitrary factor for illustration purposes. C) Three trajectories that were considered to have changed, each with a different
angle between targets. The original target’s position is depicted in the same color as the trajectory.
doi:10.1371/journal.pone.0102553.g012
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where m~
m

BL{BS

and b~{
BS

BL{BS

. Therefore, this random-

walk model predicts a linear psychometric function and cannot

account for the sigmoidal profile of the subjects’ categorical

performance observed here (Figures 2A and 8A). Diffusion models

have been successfully applied to explain the response times and

the accuracy of subjects’ performance in two-alternative forced

choice tasks [60]. However, in visual movement-direction

discrimination tasks, the psychometric functions are calculated

using Palmer et. al., equation A13 [60] as a function of m that is

proportional to the stimulus strength. Thus, under these conditions

a diffusion model produces a sigmoidal shape in the psychometric

function.

Supporting Information

Dataset S1 Page 1: Mean reaction times (RT) as a function of

the categorized intervals for each of the twenty subjects for correct

and incorrect trials. Page 2: Mean movement times (MT) as a

function of the categorized intervals for each of the twenty subjects

for correct and incorrect trials.

(PDF)

Dataset S2 Mean reaction (RT) and Movement times (MT) as a

function of the angle between the two response targets for each of

the 20 subjects.

(PDF)
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