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Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico

Timing is a fundamental variable for behavior. However, the mechanisms allowing human

and non-human primates to synchronize their actions with periodic events are not yet

completely understood. Here we characterize the ability of rhesus monkeys and humans

to perceive and maintain rhythms of different paces in the absence of sensory cues or

motor actions. In our rhythm task subjects had to observe and then internally follow a

visual stimulus that periodically changed its location along a circular perimeter. Crucially,

they had to maintain this visuospatial tempo in the absence of movements. Our results

show that the probability of remaining in synchrony with the rhythm decreased, and the

variability in the timing estimates increased, as a function of elapsed time, and these

trends were well described by the generalized law of Weber. Additionally, the pattern of

errors shows that human subjects tended to lag behind fast rhythms and to get ahead

of slow ones, suggesting that a mean tempo might be incorporated as prior information.

Overall, our results demonstrate that rhythm perception and maintenance are cognitive

abilities that we share with rhesus monkeys, and these abilities do not depend on overt

motor commands.

Keywords: rhythm, timing, rhesus, Weber fraction, model of time perception

INTRODUCTION

The ability to estimate time intervals is fundamental to behavior. Motor actions performed outside
their intended temporal window often have reduced effectiveness or a complete loss of purpose.
However, the mechanisms allowing the brain to time future sensory and motor events are not
yet completely understood (Merchant and de Lafuente, 2014). Human, and to a certain extent,
monkey subjects can repeatedly tap in synchrony with sensory stimuli (synchronization), and they
can continue tapping in the absence of external stimuli (continuation) (Wing and Kristofferson,
1973; Ivry and Hazeltine, 1995; Zarco et al., 2009; Repp and Su, 2013). The increase in variability of
the tapping responses that define time intervals is well described by the generalized Weber’s law:

σ
2
= k · T2

+ σ
2
indep (1)

in which T is elapsed time, k approaches the square root of theWeber fraction at long elapsed times,
and the term σ

2
indep

represents a basal variance that does not increase with time (Getty, 1975; Killeen

andWeiss, 1987; Gibbon et al., 1997; Bizo et al., 2006; Merchant et al., 2008; Zarco et al., 2009; Laje
et al., 2011).

However, the capacity of human and non-human primates to maintain a rhythm in
the absence of sensory cues, or a motor action such as tapping, has been less studied
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(Grahn, 2009; Patel et al., 2009; Fitch, 2013; Repp and Su, 2013).
A particularly important question that remains unanswered is
whether monkeys are able to perceive and maintain a rhythm
in the absence of overt motor actions (Bispham, 2006; Merchant
and Honing, 2014). Here we characterize the behavior of human
and rhesus subjects in a task in which they have to estimate the
tempo of a periodic sensory event and then maintain that rhythm
in the absence of movements. We hypothesize that human and
monkey subjects share the ability to maintain a temporal rhythm
in working memory, and that this is not dependent on overt
motor actions. This will support the notion that rhythmic interval
timing is a higher cognitive function not tied to particular motor
actions, which is shared among primates.

We developed a rhythm task in which subjects had to
observe a visual stimulus that periodically changed its location
along a circular perimeter. After this presentation period, the
stimulus disappeared and subjects had to internally follow
its location as a function of elapsed time. Importantly, at a
random time during this continuation phase, subjects were
asked to indicate the estimated position of the stimulus (Go-
time). Thus, this task generated a visuospatial rhythm defined
by the time interval between location changes (Doherty et al.,
2005), much like the rhythm defined by the motion of a
discretely moving second hand in a clock. To correctly estimate
the stimulus position subjects must first adjust their internal
chronometers to the pace of the visual stimulus and then
use that internal rhythm to predict the position during the
continuation phase. Since we know that the variability of the
timing estimates increases with elapsed time we expect the
probability of correct responses to decline as a function of
time.

Whether subjects time single intervals independently or they
estimate total elapsed time is an important open question that we
address in human subjects by analyzing the pattern of errors and
also by fitting continuous time and a reset timemodels.

An important question in timing research is whether intervals
of different lengths are timed by a single mechanism or whether
different intervals use distinct chronometers. There is evidence
that the standard Weber fraction is not constant for intervals
larger than approximately 1.2 s (Hinton and Rao, 2004; Bizo
et al., 2006; Lewis and Miall, 2009; Grondin, 2012, 2014; Allman
et al., 2014), and this could be a sign that different clocks
or timing processes are used to time intervals of different
durations (Bangert et al., 2011; Rammsayer and Troche, 2014).
We approach this issue by calculating the traditional Weber
fraction for intervals of different duration, and also by fitting
a model of the generalized Weber fraction (Equation 1). The
results show that the Weber fraction diminishes as a function
not only of total elapsed time, but also as a function of the
interval length subdividing that total time (Grondin et al., 1999).
Our results demonstrate that the generalizedWeber law provides
a satisfactory description of behavioral patterns such as the
proportion of correct responses, the increase in variability as a
function of time, and the systematic pattern of timing errors.
The evidence suggests that short (0.5 s), medium (0.75 s), and
long intervals (1.0 s) seem to be timed by mechanisms with
increasingly large time-independent variance.

METHODS

Behavioral Tasks
In our visuospatial rhythm task the human subjects were
asked to maintain their eyes in a fixed position (fixation)
and to keep a mouse cursor at the center of a computer
monitor while attending a peripheral disk that periodically
changed location (Figure 1). After the presentation of 3 filled
intervals (presentation phase), the disk disappeared and subjects
had to covertly predict its position as a function of elapsed
time (continuation phase). After 1–6 continuation intervals
(uniform distribution, pseudo-randomly selected) the fixation
point disappeared (Go-time), instructing the subjects to move the
cursor and click over estimated position of the disk at the Go-
time. It is important to note that the rhythm stops at Go-time and
subjects can calmly click over the estimated position. In other
words, it is not an interception task in which reaction time and
handmovement should be taken into account when executing the
behavioral response. The interval duration was chosen pseudo-
randomly on each trial (0.50, 0.75, or 1 s for monkey and 8-choice
datasets; 0.50 or 1 s for the rest of the datasets). Instead of using
a mouse, monkeys were trained to maintain their right hand at
the center of a touchscreen and at the Go-time, to perform a
reachmovement to touch the estimated location of the disk. They
were rewarded with a drop of water on correct responses. An
infrared camera (200 Hz, Applied Science Laboratories) was used
to monitor eye position within 1.5◦ around the fixation point
(Figure 1).

Monkeys were first trained in a 6-choice version of the task
but then we decided to simplify it to a 2-choice task that is more
suitable for the acquisition of neurophysiological data that we
plan to carry after the behavioral tests presented in this report.
(Figure 1). In addition to the 2-choice task, human subjects
performed a 6-choice, an 8-choice, and also a continuous version
of the task. The 6-choice and 8-choice versions of the task were
included in the human experiments to accurately estimate how
the variance of the behavioral responses changes as function of
elapsed time. The use of 6 or 8 targets make it possible to measure
whether responses are ahead of or behind the true stimulus
position. This is not possible in the 2-choice task because there
is only one correct and only one incorrect target.

In the continuous version of the task, the disk moved smoothly

along a gray path. The disk moved at the same speeds as those in

the 6-choice task. A response was defined as correct if the mouse

click was within 30◦ of the correct position (this divides the gray

circular path into six regions, analogous to the 6-choice task). We

developed the continuous task as a control experiment in which

timing is required to estimate the position of an invisible target

(O’Reilly et al., 2008), but it does not depend on the rhythm
imposed by the repetition of isochronous intervals.

To correctly predict the stimulus position subjects must rely
on an internal chronometer whose variability increases with
elapsed time, as described by the generalized Weber’s law. Thus,
the Go-time is a key experimental variable determining how well
the subjects can estimate the disk location. Short Go-times will
likely result in correct responses, while at long Go-times subjects
are more likely to miss the correct disk location (they can get
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FIGURE 1 | The visuospatial rhythm task. (A) In the 2-choice task a visual

stimulus (colored disk) alternates left and right of a central fixation point. After

three visible intervals (presentation phase) the disk disappears and subjects

must internally track its location as a function of elapsed time (continuation

phase). The fixation point can disappear at the midpoint of any

pseudo-randomly selected continuation interval (Go-time), instructing the

subjects to indicate the estimated disk location (left or right). (B) In the

6-choice task the disk moves sequentially to six marked locations along a

circular path. Taking into account the direction of rotation, this version of the

task allows estimating whether the subjects’ responses are ahead of or behind

the correct target location. (C) In the continuous version the disk moves

smoothly along a gray path at a velocity that matches the position of the disk

on the 6-choice task. Angle units were transformed to time units for the

analyses described in the text.

ahead or behind the true location). Note that the spatial location
of the stimulus (angle) and the spatial location of the behavioral
responses (angle) were expressed in time units (seconds).

We describe behavioral performance with four variables,
and we plot these as a function of Go-time (Figure 4): (1)
The probability of a correct response p(correct), indicating the
proportion of trials in which subjects correctly estimated the
position of the disk; (2) the standard deviation (Std) of the
responses, expressed in time units; (3) the traditional Weber
fraction, defined as the standard deviation (Std) divided by the
mean generated time (mean spatial location of the behavioral
responses, converted to time units); and (4) the constant error, or
bias, defined as the difference between the true and the estimated
position of the disk, expressed in time units. It must be noted that
the constant error can only be estimated in the 6-choice, 8-choice,

and the continuous versions of the task. The 2-choice version of
the task allows recording correct and incorrect responses, but
precludes determining whether an incorrect response was ahead
of or behind the true stimulus position. The columns of Figure 4
show these four behavioral parameters for each dataset, grouped
by interval duration, and plotted as a function of Go-time. The
Go-cue (disappearance of the eye fixation point in humans or
disappearance of hand fixation point in monkeys) occurred at the
middle of 1–6 continuation intervals (pseudo-randomly selected;
1–4 continuation intervals in monkeys). Thus,Go-timeswere 0.5,
1.5, 2.5, 3.5, 4.5, 5.5, for the 1 s interval and 0.25, 0.75, 1.25, 1.75,
2.25, 2.75 for the 0.5 s interval. Formonkeys, the first four of those
Go-times were used, and an additional interval of 0.75 s was also
tested (Go-times 0.38, 1.13, 1.88, 2.63 s).

Participants, Apparatus, and Training
Thirteen human subjects were tested in this study and were
paid for their participation (8 females, median age 25, Std 4.1).
They were right-handed, had normal or corrected-to-normal
vision, and were naive about the purpose of the experiment.
All subjects reported no systematic musical training for more
than a year. Each subject volunteered and gave informed
consent for this study, which complied with the Declaration
of Helsinki and was approved by the National University of
Mexico Institutional Review Board. In addition to a minimum
monetary compensation, human subjects were also compensated
for every correct trial (feedback was provided on each trial by
flashing the correct target position). Two male monkeys (Macaca
mulatta, 5–7 kg, ages 5, and 6) were used. Animal experimental
procedures were approved by the National University of Mexico
Institutional Animal Care and Use Committee and conformed
to the principles outlined in the Guide for Care and Use of
Laboratory Animals (NIH, publication number 85-23, revised
1985). Human subjects were seated comfortably on a chair
facing a computer monitor (LCD screen, 60 Hz refresh rate,
model S27C350H) in a quiet room. Stimuli were generated and
data were collected with custom software written in Matlab
and the Psychophysics Toolbox (Brainard, 1997). Subjects came
to the lab on separate days to perform each task type (2-
choice, 6-choice, 8-choice, continuous). The order of the task
type was counterbalanced between subjects. In each session
subjects performed 48 training trails followed by a 15 min
rest period, and then 288 test trials (6 Go-times, 2 interval
durations, 24 repetitions) with 15 min rest periods every 98
trials. Monkeys spent ∼4 months progressively learning the
task structure, and another ∼6 months for their performance
to reach asymptotic levels. To make sure monkeys learned to
estimate a rhythm (presentation phase) and then being able to
use that rhythm to predict the stimulus position as a function
of the elapsed time (continuation phase), we first trained them
in a version of the 6-choice task in which interval length was
chosen from a continuous distribution (300–1200 ms, uniform
distribution) and the number of presentation intervals was
variable (1–4, uniform distribution). This variation in initial
conditions minimized the possibility of monkeys learning a
simple association between elapsed time and a fixed stimulus
position on the screen. We then moved to the 2-choice task that
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we present here and that will be used in physiological recordings
in the future. The 2-choice version of the task is better suited for
the acquisition and analysis of neuronal data because it has fewer
conditions and variables. For example, it has only two possible
starting and end locations of the stimulus. The behavioral
decision is thus binary, allowing us to record many repetitions
of the same type of trials and the underlying neurophysiological
data. On each training day monkeys performed 3–6 runs with
approximately 130 trials per run. The data analyzed here was
obtained from 358 sessions in a ∼4 month period following
training (109 sessions monkey I; 249 sessions monkey M; 47,235
total trials).

Fitting the Generalized Weber Law
To test the extent to which behavioral performance conformed to
the scalar property of timing, we adapted the generalized Weber
law to the discrete time intervals that define our rhythm task
(Figures 2A,B). We generated a model in which the probability
of a correct response p(correct) was defined as the area under a
Gaussian distribution that is comprised within the limits of the
time interval corresponding to a given Go-time (this distribution
represents the variability of the internal time estimates). For
example, Figure 2A shows that the area comprised within the
first continuation interval (Go-time = 0.5 s) is close to 1,
whereas the area comprised within the sixth memory interval
approximates 0.5 (Go-time = 5.5 s). In this manner, as described
by the generalized Weber law (Equation 1), the time-dependent
increase in variability results in a reduced proportion of correct
responses as a function of Go-time, and the steepness of this
decrease is modulated by the k parameter of Equation 1.

In its traditional form, the Weber fraction determines the
slope with which the standard deviation of time estimates grows
as a function of elapsed time: σ = k·T; where k is the Weber
fraction, σ stands for standard deviation and T is elapsed
time. However, it has been found that the addition of a time-
independent noise constant better describes how σ grows as a
function of time: σ = k·T + σindep; in which σindep represents
this time-independent source of variability. The addition of this
constant results in the traditional Weber fraction (σ /mean) not
being constant as a function of elapsed time: it is higher at
short times and it decreases as time elapses. This is because at
short times (T is small) the total variability is dominated by
σindep, and as time elapses the total variability is mainly due to
the k·T product. Thus, at longer elapsed times the term k in
Equation 1 approximates the traditional Weber fraction in which
the variability is accounted by k·T. When variability is expressed
as variance and time is also squared, the resulting equation for
the generalized Weber fraction is Equation (1).

In addition to fitting p(correct), our model also fit the standard
deviation (Std) of the behavioral responses. However, it is not
possible to directly fit Equation 1 to our data because of the
discrete nature of the behavioral responses (2-, 6-, 8-choice),
i. e., Equation (1) varies continuously whereas the subjects’
responses vary within a finite number of options. Thus, the
model calculates Std from the expected proportion of responses
distributed across the discrete time intervals. In the case of the
2-choice task, for example, the discrete nature of the responses

FIGURE 2 | To model behavioral performance we adapted the

generalized Weber law to the rhythm task. (A) The Gaussian distributions

illustrate the time-dependent increase in variability of the timing estimates. The

probability of a correct response was calculated as the area of the Gaussian

curve comprised within the interval defined by a given Go-time. The probability

of a correct response for Go-times 0.5 and 5.5 s is illustrated in green. (B) In

the 4-parameter equation, produced time is modified by multiplicative and

additive factors. This allows the model to capture systematic errors like

shortening or lengthening of elapsed time. The figure illustrates the distributions

resulting from a positive displacement and a shortening of time estimates.

causes the standard deviation to saturate at long elapsed times,
when behavior is at random chance and the behavioral responses
are distributed equally between the two choices (Figure 4, second
column). Thus, the 0.5 s saturating value is the expected standard
deviation of a random variable taking the values 0 and 1 s (as in
the behavioral responses corresponding to correct and incorrect
responses in the 1 s time interval trials).

The generalized Weber law describes how variance changes
as a function of time. However, it cannot account for systematic
trends in the constant error that is, it cannot capture whether a
subject’s estimate of time is ahead of or behind true elapsed time.
For our model to capture systematic differences between real and
estimated time (constant error, Figure 4, rightmost column) we
made use of two additional parameters (m, b):

σ
2
= k · T2

produced + σ
2
indep

Tproduced = Telapsed ·m+ b (2)

These parameters allowed our model to take into account biases
such as a constant time displacement (b), and the shortening
or lengthening of produced time (m) (Figure 2B). Equation 2
was used for the fits shown in Figures 4C,D. However, when
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FIGURE 3 | (A) The probability of a correct response (left panel) and the

standard deviation (right panel) are plotted as a function of Go-time, separately

for the short and long intervals (0.5 and 1 s, human data on the 6-choice task).

Solid and broken lines depict model fittings of a continuous (Equation 1) and a

reset (Equation 3) model of timing. Both models provided similarly good fits.

(B) Reaction times as a function of Go-time. Humans had significantly higher

reaction times which tended to decrease with Go-time. (C) Single subject data

for monkeys (n = 2) and humans (n = 10) in the 2-choice task. The probability

of correct responses p(correct) is plotted as a function of Go-time. Light colors

are used for humans and dark ones for monkeys. Broken dark lines as used

for monkey 2 data.

comparing parameters k and σ
2
indep

across tasks we used the two-

parameter generalizedWeber’s model (Equation 1, this is because
the 2-choice tasks do not allow to calculate the constant error).

As was done by Buonomano and colleagues (Laje et al., 2011),
we tested a reset version of the generalized Weber law in which,
instead of variance increasing in proportion with total time
squared (term k·T2, Equation 1), it increased with the sum of the
squares of each interval duration:

σ
2
= k ·

(

T2
1 + T2

2 + ...+ T2
Go-time

)

+ σ
2
indep (3)

Thus, in the reset version of the model, variance increases
linearly rather than quadratically with time. By plotting Std
as a function of Go-time, this trend can be observed as a
saturating effect at large Go-times (Figure 3A, right panel).
Whether subjects time individual intervals separately, or they
time total elapsed time is an important question in timing
research (Hinton and Rao, 2004; Hinton et al., 2004; Laje et al.,
2011; Narkiewicz et al., 2015). We found that the continuous
(Equation 1) and reset (Equation 3) models provided statistically
similar fits to our data (p = 0.13, paired t-test on the Fisher-
transformed correlation coefficients between behavioral data and
model estimates, t(24) = −1.6; Laje et al., 2011; Figure 3A). For
simplicity, our model used Equations 1, 2 to fit the behavioral
data.

Fitting was performed with the function fmincon in Matlab
R2014b by minimizing the error between estimates from the
model and the behavioral results, simultaneously for parameters
p(correct), Std, and constant error (one fit for each interval
duration). Because of the difference in scale and measurement
units [probability in p(correct), seconds in Std, and constant
error], these quantities were standardized to values between 0 and
1 before calculating the total fitting error.

RESULTS

Humans and monkeys learned to perform the timing tasks,
and their behavior showed consistent patterns. We show single
subject data for the 2-choice task in Figure 3C and mean
data for the different datasets in Figure 4. The proportion
of correct responses (Figure 4, first column) decreased as a
function of Go-time, a trend well captured by our model
of the generalized Weber law (continuous lines). Monkeys’
performance (Figure 4A) was better than that of humans
(Figure 4B) as can be readily appreciated by the larger proportion
of correct responses, the lower variability (Std), and the lower
Weber fraction. In humans, the proportion of correct responses
approached random performance around the 5–6th intervals, and
the standard deviation saturated at 0.5 and 0.25, the maximum
possible values for the 1 and 0.5 s intervals on the 2-choice task
(Figure 4B, see Section Methods).

In addition to a better performance, monkeys also showed
significantly faster reaction times to the Go-cue (Figure 3B, p <

0.01, two-sample t-test on the pooled data for humans against
the pooled data for monkeys, i.e., all Go-times, correct and
incorrect responses; t(38) = −17.9). It is likely that increased
performance and faster reaction times are a consequence of the
longer training the monkeys received (Methods and Discussion).
Human subjects showed a trend of diminishing reaction times
as a function of Go-time (linear regression, slope = −20 ms/s, p
< 0.05), which could reflect the anticipation of trial termination
(increasing hazard rate).

Compared to the 6-choice task, the proportion of correct
responses in the continuous task was significantly lower
(Figures 4C,D, to formalize this observation we performed a
paired t-test comparing each p(correct) across tasks for each Go-
time and each interval length t-test, t(11) = 11.2, p = 2.4e-07.).
As described in Section Methods the region defining a correct
response in the continuous task was a window of ±30◦ around
the correct location, comprising a 6th of the circle, just as in the
6-choice task. However, it is likely that the larger variability and
the resulting lower proportion of correct responses observed in
the continuous task is explained by the absence of six defined
choices. With six defined choices, there is less uncertainty about
the correct target position.

As can be observed on the panels of the first column of
Figure 4, the decreased proportion of correct responses is more
pronounced for the short interval (0.5 s, red dots and lines),
and this is observed in all versions of the task (2-, 6-choice,
and continuous). To formalize the observation that p(correct)
decreases more rapidly for short intervals (0.5 s) than for long
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FIGURE 4 | Behavioral performance of humans and monkeys in the 2-choice, 6-choice and continuous tasks. (A) Monkeys’ performance on the 2-choice

task. Note that they performed up to four continuation intervals. (B) Human performance on the 2-choice task. (C) Human performance on the 6-choice task. (D)

Human performance on the continuous task. The columns from left to right show the probability of a correct response p(correct), standard deviation Std, Weber

fraction, and constant error (note that constant error cannot be calculated in the 2-choice tasks, see Section Methods). Continuous lines show model fits (Equation 1)

to the different interval lengths (red 0.5 s, black.0.75 s, blue 1.0 s). The insets in the fourth column show the constant error in an 8-choice task and in a continuous

task that included a 0.75 s interval. All panels share the axes notation of (D).

ones (1.0 s) we compared p(correct) at similar intermediate Go-
times for each dataset (one p(correct) for each interval, i.e.,
comparison of two proportions for each dataset). We set p <

0.01 and then we corrected for multiple comparisons (Bonferroni

correction, new significant p < 0.0025). That p(correct) decreases
more rapidly for fast intervals is an expected trend because the
temporal window for a correct response is narrower for short
intervals. That is, even if timing variability at a given elapsed time
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is equal for short and long intervals, a reduction in the probability
of correct response is expected for narrower time intervals.

We observed, as had other studies before, that the Weber
fraction is not constant but declines exponentially as a function
of time (Figure 4, third column; Laje et al., 2011). This trend
is explained by the presence of time-independent variability (y-
intercept on the Std graphs, term σ

2
indep

of the model). This

basal variability has a large influence at short elapsed times.
At longer elapsed times the y-intercept has less impact on the
ratio Std/mean that defines Weber fraction. The fact that the
generalized Weber law satisfactorily fits the behavioral data is
strong evidence supporting the presence of time-independent
variance in the timing mechanism (Figure 4, third column).

Constant Errors and its Relation to Timing
Strategy
In addition to the proportion of correct responses p(correct),
variability (Std), andWeber fraction, the 6-choice and continuous
tasks allowed us to estimate the constant error, i.e., the difference
between estimated and true elapsed time. This is easily computed
by taking into account the direction of disk rotation (clockwise
or counterclockwise) and then calculating the difference between
the true disk position and the subject’s estimated disk position.
This angle difference is then expressed in time units.We observed
a marked difference in the pattern of errors between the 6-choice
and the continuous versions of the task, and this difference can be
useful to determine whether subjects are timing each individual
interval or total elapsed time.

When the target jumps fast across the six choices (0.5 s
interval, red dots, Figure 4C), the pattern of negative errors
indicates that subjects increasingly lag behind the real target
position, thus signifying that the subject’s internal chronometer
was running slower than the intended pace (Figure 4C, last
column, red line and dots). Showing the opposite trend, subjects
tended to get ahead of a slowly jumping target (1 s interval, blue
dots, Figure 4C), indicating that their internal chronometer was
running faster than the intended 1 s intervals. As can be observed
in the insert, the same pattern of errors was observed in an 8-
choice task in which three interval durations were tested (0.5,
0.75, and 1 s). Importantly, the insert shows that the behavioral
responses for the middle interval duration (0.75 s) were unbiased,
suggesting that the subjects’ internal chronometer tends to pace at
the rate that is the mean of the distribution of interval durations
(Jazayeri and Shadlen, 2010, 2015). We performed a one-way
analysis of covariance (ANCOVA) on the mean constant errors
and found that slopes are significantly affected by the “interval
duration” factor. This analysis also revealed that the slope for the
1 s interval is significantly positive, (p < 0.01, t = 7.7, d.f. = 3;
inset on Figure 4C, blue dots), the slope of the 0.75 s interval is
not significantly different from zero [p = 0.61, t(3) = 0.6] and
finally, that the slope of the 0.5 interval is significantly negative [p
< 0.01, t(3) =−6].

Compared to 6-choice, the continuous task shows a different
pattern of errors as can be readily appreciated in the last column
of Figure 4D. Instead of a bias that progressively accumulates
with a positive slope for long intervals and a negative slope

for short ones, what it is observed is that all interval durations
generate constant errors with negative slopes. Moreover, for
all interval durations, short elapsed times (Go-time) generate
positive errors while long elapsed times result in negative errors.
The same trend can be observed in the insert depicting a
continuous experiment in which three disk speeds were used
(matching the position of the disk in the 6-choice task at the 0.5
and 1.0 s intervals, with an additional interval of 0.75 s).

Constant errors are plotted as a function of interval length
in Figure 5A, separately for the discrete and continuous tasks.
It can be seen that the constant errors in the discrete tasks
(pooled 6- and 8-choice; averaged across Go-times) change with
a positive slope as interval length increases, whereas in the
continuous tasks they span both positive and negative values
for all interval durations. We conducted a linear regression on
each dataset (continuous and discrete) and found that constant
errors on the discrete task have a significantly positive slope (0.74,
[0.47 1.0] 95% C.I., d.f. = 19), and a significantly negative y-
intercept (0.4958, [0.7039–0.2877] 95% C.I., d.f. = 19), i.e., they
go from negative to positive values as interval duration increases.
Conversely, the regression on the continuous task shows that the
slope and intercept are not statistically different from zero, i. e.,
they are scattered around zero for the three interval durations
(slope = −0.02, [−0.74 0.71] 95% C.I., d.f. = 19; intercept =
−0.12, [−0.68, 0.45] 95% C.I., d.f.= 19).

The error patterns differ between the continuous and discrete
tasks, suggesting that in the discrete 8-choice, and 6-choice tasks
subjects are timing individual intervals and that their estimates
are biased toward a mean interval. Conversely, in the continuous
task the pattern of errors indicates that subjects were timing the
total duration of the continuation phase, and their time estimates
are biased toward the mean total duration (Jazayeri and Shadlen,
2010; Acerbi et al., 2012). Our finding that the continuous and
discrete tasks exhibit different error patterns is important because
it allows us to determine whether subjects are timing individual
intervals or total elapsed time (see Section Discussion).

Time Dependent and Time-Independent
Variance
The brain might use a single chronometer to time a range of
durations or, conversely, make use of different chronometers for
different behaviorally relevant intervals. This question can be
approached by comparing the classical Weber fraction in long-
and short-interval trials, as illustrated in Figure 4 (third column),
and also by comparing the coefficients k and σ

2
indep

(Equation 2)

resulting from fitting the model to the behavioral data, separately
for each time interval. If a single chronometer underlies timing of
short and long intervals, we would expect similarWeber fractions
and similar k and σ

2
indep

values for the different interval durations.

Significant differences in these parameters would lend support
to the notion that multiple chronometers could be used to time
different intervals.

As described by Weber’s law, the standard deviation of the
timing estimates linearly increases with elapsed time. The human
data on the 6-choice and continuous tasks indicate that this
increase in variability has different slope and intercept values
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FIGURE 5 | Constant error and fitted parameters. (A) The constant error

(difference between produced and true elapsed time) is plotted for the different

time intervals (0.5, 0.75, and 1.0 s), separately for the discrete (6 and 8-choice)

and continuous versions of the task. (B) The fitted parameter k (Equation 1) as

a function of interval duration (boxplots human data, n = 6; blue lines monkey

data, n = 2) (2-choice, 6-choice, 8-choice (insert in Figure 4C), continuous

with three interval durations (insert in Figure 4D), and also from a dataset of

the continuous task that is not show in results). (C) Parameter σ
2
indep

(Equation

1) as a function of interval duration.

for long- and short-interval trials (Figures 4C,D, Std graphs).
Short-interval trials (0.5 s) have smaller variability but a larger
slope, while long-interval trials (1 s) show a larger variability
that grows at a lower rate (variability patterns on the 2-choice
version of the task are no informative because they have an upper
limit at long elapsed times, and this limit is different for long
and short intervals, see Section Methods). We found that, the
traditional Weber fraction decreases as a function of elapsed time
(Laje et al., 2011), and additionally, that short-interval trials show
lower Weber fractions for elapsed times up to 3 s.

To quantitavely assess whether variability differs across
interval durations (0.5, 0.75, and 1 s) we fit our datasets with
the two parameter model (Equation 1) to estimate the k and
σ
2
indep

parameters. Figures 5B,C plot the fitted parameters as a

function of interval duration. In humans, we observed a tendency
of k to be larger for the short interval (Figure 5B). However, this
tendency was not present in the monkey data, indicating either a
difference between species or possibly an effect of training on the
k parameter. We speculate that human subjects showed a larger k
parameter because they performed fewer trials of the timing task
(as presented next, this is also the case for the σ

2
indep

parameter,

an observation also made by Laje et al., 2011).
Our results show a positive correlation between the σ

2
indep

parameter and interval duration (Figure 5C). Longer time
intervals show larger σ

2
indep

, and this trend is observed in humans

as well as in monkeys. Monkeys, however, have lower σ
2
indep

values, probably due to an effect of additional training and the
total number of trials they performed (see Section Methods). We
tested this correlation by a linear regression and found that for
panel 5B the slopes for monkeys and humans are not statistically
different from zero, meaning that there is no influence of the
interval length on the k parameter slope for human data: −0.07,
[−0.17 0.02] 95% C.I., d.f. = 13; slope for monkey data: 0.02,
[−0.20 0.25], 95% C.I., d.f. = 1. For Figure 5C we found that
both linear regressions have statistically significant positive slopes
(slope for human data: 0.4, [0.23 0.57] 95% C.I., d.f. = 13; slope
for monkey data: 0.28, [0.12 0.44], 95% C.I., d.f. = 1), meaning
that the basal standard deviation (parameter σ

2
indep

) increases as

a function of interval duration.

DISCUSSION

In summary, the main novel observations of the present study
are that (1) monkeys were as capable as humans to follow visuo-
spatial rhythms with different tempos, and they were able to
internally maintain those rhythms without overt movements;
(2) both species showed an increase in temporal variability that
followed the generalizedWeber law, where the time-independent
variability changed as a function of the tempo (interval length);
and (3) the pattern of constant errors across tempos indicated
that human subjects were resetting their clock each interval
instead of measuring continuous elapsed time.

Monkeys and Humans Can Internally
Maintain a Temporal Rhythm
Our experiments show that monkeys and humans are able to
perceive visuo-spatial rhythms of different paces, and they can
internally maintain those rhythms without overt movements.
This important finding indicates that rhythm perception and
maintenance is a higher cognitive function that we share with
other primates and that it does not depend on the execution of
motor commands.

The pattern of constant errors (Figures 4C,D, last column)
calculated from the human data suggests that subjects were
timing individual intervals in the discrete task, but total duration
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in the continuous task. Additionally, timing errors in the 6-
and 8-choice tasks show that subjects were lagging behind fast
rhythms and getting ahead of slow ones (although the errors
in 1s interval of the 6-choice task do not increase linearly they
are all positive. The increasing trend is better appreciated in the
insert of Figure 4C). The fact that a rhythm of intermediate pace
generated no bias supports the notion that the timingmechanism
calibrates itself to the distribution of interval durations it has
to measure, as has been shown by previous research (Jones and
McAuley, 2005; Jazayeri and Shadlen, 2010, 2015; Acerbi et al.,
2012). Conversely, timing total elapsed time generates a pattern
of errors that are positive for short elapsed times and negative
for long elapsed times. This suggests that subjects’ time estimates
were biased toward the mean total duration. We propose that the
different patterns of constant errors are a reliable signature that
could help to distinguish whether subjects are timing individual
intervals or total elapsed time.

The tendency to produce intervals that are closer to the
mean is a well-established observation often named the “central-
tendency” effect or Vierordt’s law (Roy and Christenfeld, 2008;
Bangert et al., 2011; Shi et al., 2013). Our results show that in
keeping rhythms of different paces the central tendency effect is
observed as a bias toward the mean frequency of the rhythms
instead of toward the mean total duration. Incorporating prior
information such as the mean value of a range of intervals
is a mechanism that helps to reduce the effect of noise in
time estimation and production, and in our case, rhythm
maintenance.

We did not test our monkeys on the continuous task so
whether they show the same pattern of errors as human remains
an open question. However, it is important to consider that
monkeys and humans showed the same patterns of behavioral
responses in the 2-choice task, and also the same model
satisfactorily accounted for the behavior of human and monkeys.

The question whether subjects time individual intervals or
total duration has been addressed before in humans (Hinton and
Rao, 2004; Hinton et al., 2004; Laje et al., 2011; Narkiewicz et al.,
2015). Buonomano and colleagues used a spatiotemporal task in
which subjects had to perform a series of button presses with
an elaborated spatial and temporal structure. They found that,
although subjects were generating a series of individual intervals,
a continuous time model was a better fit to their behavioral
results. On the contrary, our data from the 6-choice task suggest
that subjects were resetting their clocks after each individual
time interval. We believe these seemingly contradictory results
arise from the different experimental designs. In our rhythm
task, subjects could be asked to indicate the position of the
target at any given interval (Go-time), so they were prepared
to generate a behavioral response for each interval. If the Go
cue didn’t arrive by the middle of an interval they had to start
timing the next interval and so on. In contrast, on the rhythm
task of Buonomano and colleagues subjects had to perform
a complete series of intervals for each trial, and this might
have compelled them to time total elapsed time. We think that
variable Go-times, that is, the possibility of terminating the trial
at any interval, prompted the subjects to time each interval
independently.

It might seem contradictory that the pattern seen in the
constant errors suggests that subjects were timing individual
intervals whereas the model we fit was based on variance growing
with total elapsed time (Equations 1, 2, human data). However,
we must note that the difference between a reset and a continuous
model, from the point of view of how variability grows, is a
difference in the shape of the curve of Std vs. time (Figure 3A).
The reset model predicts that Std grows sub-linearly while the
continuousmodel predicts a linear increase. We found that, with
our current data, these two models could not be distinguished.
Our results showed, however, that continuous and a reset mode
of timing could be discerned from the pattern of constant errors
(Figures 4C,D, last column).

Basal Variance Depends on Interval Length
Monkeys and humans showed performance parameters well
captured by the generalized Weber law. Monkeys, however,
showed less timing variability and a higher proportion of correct
responses. We speculate that this superior performance is due
to the longer training the monkeys received (the monkey
dataset was collected after 4–6 months of training). It is
likely that increased performance and faster reaction times are
a consequence of the longer training the monkeys received.
However, it is also possible that differences in reward value and
motor planning also contribute to these differences (humans used
a mouse cursor while monkeys directly touched the screen to
communicate their choices). Previous studies in humans have
shown that the Weber fraction quickly decreases after just a few
practice sessions (Laje et al., 2011). We speculate that due to their
extensive training theWeber fraction of our monkey subjects was
at its asymptotic value, but this might not have been the case of
our human subjects who performed only one practice session.
We expect that with enough training, human subjects could
have performed the rhythm task as accurately as the monkey
subjects. Our model fittings revealed that humans and monkeys
had similar k-values (Equations 1, 2, Figure 5B), and that the
lower variability of the monkeys’ time estimates was due mainly
to a lower time-independent variance (Figure 5C, blue line).

The term σ
2
indep

showed a tendency to increase as a function

of interval duration in both species, indicating that different
time intervals have different amounts of time-independent noise.
This observation suggests that different chronometers or time
mechanisms could time different interval durations. We favor
the view that training in timing tasks induces the formation of
multiple time templates that match the range and distribution
shape of the behaviorally relevant time intervals. Indeed, previous
psychophysical and physiological studies support the notion of
neural circuits tuned to different interval durations (Nagarajan
et al., 1998; Meegan et al., 2000; Bartolo and Merchant, 2009;
Merchant et al., 2013; Bartolo et al., 2014). It is also known that
timing different types of movement, biological vs. non-biological
for example, is performed by different brain structures that can
be selectively manipulated (Avanzino et al., 2015), and this is also
consistent with the idea that there is no central general-purpose
chronometer.

Our data shows that Weber fraction decreases exponentially
as a function of elapsed time and that this is due to the σ

2
indep
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term, that is, to the presence of a basal variability (y-intercept
on the Std vs. Go-time graphs, Figure 4). As can be observed in
the graphs, the effect of this basal variability reduces at longer
elapsed times. However, a recent study in which Grondin and
colleagues asked subjects to count at different speeds showed that
Weber fraction increased in proportion to the interval length
used to subdivide a large total time and that this effect persisted
for elapsed times of up to 24 s (Grondin et al., 2015). Their
results also showed that mean produced time was always shorter
than real elapsed time. Contrary to Grondin’s findings, our data
predicts that no differences should be observed for long and short
subdividing intervals when total elapsed times are larger than
∼3 s and that errors should not be all negative but instead should
be positive for long subdividing intervals and negative for short
intervals. We suggest that these differences could be explained
by differences in the experimental design. We used interleaved
trials in which total elapsed time (Go-time) and interval length
were pseudo-randomly selected while Grondin and colleagues
used a blocked design in which subjects performed the trials of
different subdividing intervals in separate sessions. We believe
this is an important difference because it has been demonstrated
that subjects adjust their internal chronometer according to the
distribution of timing intervals they must estimate (Jazayeri and
Shadlen, 2010). As was the case in Buonomano’s task, subjects in
Grondin’s experiments had to count up to a predetermined total
number of intervals, prompting them to measure total elapsed
time.

It is well known that subdividing a long interval into smaller
ones decreases the total variance of the estimated elapsed
time. Although our task was not designed to explore this
phenomenon our results show that subdividing total elapsed time
into 0.5 s intervals reduces the timing variability as compared to
subdividing with 1 s intervals. This can be observed in Figure 4C

by comparing the variability of the red and blue lines. We note
however, that the beneficial effect of subdividing elapsed time into
0.5 s intervals is limited to total elapsed time of 3–4 s.

It is known that macaque monkeys do not easily entrain to
temporal rhythms and that training them in rhythmic tapping
tasks might take up to a year (Zarco et al., 2009; Merchant and
Honing, 2014; Patel and Iversen, 2014). We speculate that the
spatial component of our visuospatial task was an important
sensory element that helped the monkeys better perceive and
maintain rhythms of different paces. There is evidence that
macaques rely more on visual than on auditory cues to control
their timing behavior (Zarco et al., 2009; Merchant and Honing,
2014). Nevertheless, the timing behavior of monkeys followed
the same pattern of temporal variability and constant errors than
humans in a synchronization-continuation tapping task (Zarco
et al., 2009).

A possible alternative explanation is that monkeys did not
engage the visuo-spatial rhythm but relied instead only on an
association between elapsed time and target position. However,
we consider this possibility unlikely. The association betweenGo-
times and target position was not fixed. In the 2-choice task, for
example, the stimulus randomly initiates on the left or the right.
In the 6-choice task the stimulus randomly initiates in any of the
6 positions and can rotate either clock wise or counterclockwise.

This variation in initial conditions (remember that interval
length and Go-times are also selected pseudo-randomly) makes it
highly unlikely that subjects were mapping a given Go-time with
a fixed target position. We would like to mention that, although
we only report the behavior in the 2-choice task, monkeys were
initially trained in a version of the 6-choice task in which the
interval length was chosen from a continuous distribution (300–
1200ms, uniform distribution). During this phase of training, the
number of presentation intervals was also variable (1–4, uniform
distribution). Thus, the stimulus position at any given elapsed
time was dependent on (1) the position of the first presentation
interval, (2) the direction of stimulus rotation, (3) the number of
presentation intervals, (4) the interval length (chosen randomly
from a continuous distribution), and finally (5) theGo-time itself.
This variation in initial conditions makes it practically impossible
for the monkeys to learn all possible Go-time and stimulus
position combinations and instead encourages them to use the
rhythmic motion of the stimulus to predict its future position
once it is no longer visible (Coull and Nobre, 2008; Coull, 2009).

The neuronal mechanisms underlying our perception of time
and our ability to predict periodic sensory events are not yet
completely understood (Roux et al., 2003; Ivry and Spencer,
2004; Eagleman et al., 2005; Coslett et al., 2009; Coull et al.,
2011; Wittmann, 2013). It is only recently that the physiological
correlates of timing have begun to be systematically investigated
in primates (Ghose and Maunsell, 2002; Leon and Shadlen, 2003;
Janssen and Shadlen, 2005; Genovesio et al., 2006; Fiorillo et al.,
2008; Lebedev et al., 2008; Mita et al., 2009; Machens et al., 2010).
It is known that neuronal correlates of timing can be found in
parietal, motor, and pre-motor cortices of the primate cerebral
cortex (Roux et al., 2003; Merchant et al., 2011; Jazayeri and
Shadlen, 2015). These studies revealed distinct groups of neurons
whose activity dynamics correlate either with elapsed time from
the last motor or sensory event, or with the time remaining to the
next motor command.

It is our goal to contribute to the understanding of the neural
mechanisms of time estimation and time reproduction. We
developed the visuospatial timing task in non-human primates
to use it as an experimental model for studying the neuronal
correlates of timing. This rhythm task is an ideal experimental
setting because it lacks any movement during the continuation
phase and it will let us study the neuronal correlates of timing
without interference by movement or sensory-related activity.
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