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 i  g  h  l  i g  h  t  s

A  warping  method  is  used  to determine  best  alignment  of  cell  responses  to events.
Bayes  factors  are  used  to classify  sensory  or  motor  neurons.
Movement  times,  firing  rate  and  duration  of  response  are  critical  in  the  analysis.

 r  t  i  c  l  e  i  n  f  o

rticle history:
eceived 23 July 2012
eceived in revised form 25 October 2012
ccepted 26 October 2012

eywords:
ime warping
on-homogeneous Poisson process
ayes factors

nterval timing

a  b  s  t  r  a  c  t

In  tasks  where  different  sensory,  cognitive,  and  motor  events  are  mixed  in  a  sequence  it  is  difficult  to
determine  whether  neural  activity  is related  to any  behavioral  parameter.  Here,  we  consider  the  case
in which  two  alternative  trial-alignment  schemes  correspond  to two  different  neural  representations,
one  stimulus-related  and  the  other  movement-related,  using  both  simulations  of  neural  activity  and  real
recordings  in  the  medial  premotor  areas  during  a multiple-interval  tapping  task  called  synchronization-
continuation  task (SCT).  To  discover  whether  neural  responses  are  better  aligned  to sensory  or  motor
events  we  introduce  a family  of trial-alignment  time-warping  functions  indexed  by  a  single  parame-
ter  such  that  when  the  parameter  takes  the  value  0 the trials  are  aligned  to  the  stimulus  and  when
the  parameter  takes  the  value  1 they  are  aligned  to the  movement.  We  then  characterize  neurons
by  the  best-fitting  alignment  scheme  (in the sense  of  maximum  likelihood)  under  the  assumption
that  the  correct  alignment  would  produce  homogeneous  trials  without  excess  trial-to-trial  variation.

We  use  Bayes  factors  to determine  the  evidence  in  favor  of  sensory  or  motor  neural  alignments.  The
simulations  revealed  that  the  variability  in  neural  responses  and  sequential  motor  outputs  are  key  param-
eters  to obtain  appropriate  warping  results.  In addition,  the analysis  on  the  activity  of  500  neurons  in
the medial  premotor  areas  of  monkeys  executing  the SCT  showed  that  most  of  the  neural  responses
(54.2%)  were  aligned  to the  tapping  movements  instead  of the  stimuli  used  to  drive the  temporal
behavior.
. Introduction

The mammalian cerebral cortex has the ability to construct
ynamic neuronal representations about sensory events, forth-
oming movements, and a myriad of cognitive processes that

ink sensation to motor execution. Cortical responses in sensory
reas show short onset latencies to the presentation of stimuli
Mountcastle et al., 1990; Romo et al., 1996; Nowak et al., 1995;
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H. Merchant).
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ttp://dx.doi.org/10.1016/j.jneumeth.2012.10.019
© 2012 Elsevier B.V. All rights reserved.

Liang et al., 2002), whereas motor areas show sharp activation pro-
files before movement onset (Georgopoulos et al., 1982; Crutcher
and Alexander, 1990). In contrast, the responses in association
areas are less tightly locked to sensory, cognitive, or motor events
(Mountcastle et al., 1975; Merchant et al., 2004; Chafee et al., 2007).
The picture gets more complicated when we consider that the activ-
ity in the cortex exhibits a considerable amount of trial-to-trial
variability. In fact, both the shape of the activation profile (Shadlen
and Newsome, 1998; Lee et al., 1998; Averbeck et al., 2006a)  and

the onset latency (Merchant et al., 2001; Nawrot et al., 2003) show
different levels of variability across cortical areas for the diverse
behavioral aspects of a specific paradigm. Therefore, a critical prob-
lem in the cortical physiology of behaving animals is to determine

dx.doi.org/10.1016/j.jneumeth.2012.10.019
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hether the response of neurons is related to the different aspects
f a task. Different algorithms have been implemented to deter-
ine the onset latency of neurons using parametric (Ellaway, 1978;

eal et al., 1983; Davey et al., 1986; Baker and Gerstein, 2001)
r nonparametric methods (Sanderson, 1980; Nawrot et al., 2003;
entura, 2004). Most of these methods take into account the trial-

o-trial variability of neuronal activity and can determine with
ifferent levels of accuracy the onset response latency, especially to
ensory stimuli. However, these methods are not designed to test
hether the activity of a cell is associated to the sensory, cogni-

ive, or motor aspects of a task, particularly when the task includes
any such events in a sequence.
Here we describe a novel warping method to discover whether

he cell responses are better aligned to the sensory or motor events
f the synchronization-continuation tapping task (SCT). In this
ask monkeys synchronize their tapping with pacing isochronous
uditory stimuli for a number of intervals, and then continue
apping at the instructed rate without the advantage of the sen-
ory metronome (Repp, 2005; Wing and Kristofferson, 1973). We
imulated activity during the four stimuli and four taps of the
ynchronization phase of the SCT, and restricted the analysis of
he recorded neural responses to those cells that showed activity

odulations during this task phase (Zarco et al., 2009; Merchant
t al., 2011). Every analysis of multi-trial spike-train data begins by
ntroducing some form of temporal alignment across trials. Here,

e initially align the trials to the stimuli and write the resulting
emporal alignment as a function [T0(t)]. We  next let [T1(t)] be the
emporal alignment corresponding to movement and we introduce
eighted combinations of these two extreme cases to obtain inter-
ediate alignment schemes [Tw(t)] indexed by a weight parameter

w]. We then assume that under the correct alignment the trials will
e homogeneous, without excess trial-to-trial variability above that
redicted by a Poisson process with a time-varying firing inten-
ity function, and we proceed to find the best-fitting alignment
cheme. Finally, for each neuron, we used Bayes factors to evalu-
te evidence in favor of a sensory or motor alignment (Kass and
aftery, 1995). We  found in the simulations that the inter-trial
ariability of the tapping movements, as well as the magnitude
nd duration of the neural activity associated to sensory or motor
vents are critical parameters to obtain proper warping values.
urthermore, the results showed that most neurons in the medial
remotor areas of monkeys executing the SCT were aligned to the
apping movements instead of the stimuli used to drive the tem-
oral behavior. We  conclude that the present method can be used
eliably in a variety of behavioral paradigms where multiple, sen-
ory, motor, and/or cognitive events are intermixed in a sequence,
n order to determine to which event the cell responses are better
ligned.

. Materials and methods

.1. Animals

Two male monkeys (Macaca mulatta, 5–7 kg BW)  were trained
o tap on a push button in the SCT. Neurophysiological recor-
ings were carried out in the MPC  during performance of the task
sing a system with 7 independently movable microelectrodes
1–3 M�,  Uwe Thomas Recording, Germany, see Merchant et al.,
011). Single-unit activity was extracted from these recordings
sing the Plexon off-line sorter (Plexon, Dallas, TX). All the animal
xperimental procedures were approved by the National Univer-

ity of Mexico Institutional Animal Care and Use Committee and
onformed to the principles outlined in the Guide for Care and
se of Laboratory Animals (NIH, publication number 85-23, revised
985).
 Methods 212 (2013) 203– 210

2.2. Synchronization-continuation task (SCT)

The SCT used in this study has been described before (Merchant
et al., 2008; Zarco et al., 2009). Briefly, the monkeys were required
to push a button each time stimuli with a constant interstimulus
interval were presented, which resulted in a stimulus–movement
cycle. After four consecutive synchronized movements, the stimuli
were eliminated, and the monkeys continued tapping with the
same interval for three additional intervals. Monkeys received a
reward if each of the intervals produced had an error < 35% of the
target interval. Trials were separated by a variable inter-trial inter-
val (1.2–4 s). The target intervals, defined by brief auditory (33 ms,
2000 Hz, 65 dB) stimuli, were 450, 550, 650, 850, and 1000 ms, and
were chosen pseudo-randomly within a repetition. Five repetitions
were collected for each target interval. For the warping analysis
we only used the data of the four stimuli and their corresponding
tapping movements of the synchronization phase of the task. We
analyzed 500 neurons that showed a minimum discharge rate of
4 Hz and showed task related activity based on an ANOVA where
the discharge rate was  the dependent variable and the task epoch
(initial control key holding period [500 ms]  vs. the synchronization
phase) was  the factor.

2.3. Time warping

In this work, we  propose a warping transformation (Wang and
Gasser, 1999) to determine whether the activity of a cell was bet-
ter aligned to sensory or motor events during the SCT. We  defined
the time of sensory events as the instant in which the auditory
stimulus was  presented. The time of motor events was defined as
the moment in which the monkey tapped on the button. Hence, we
only used the behavioral information and cell activity recorded dur-
ing the synchronization phase of the SCT. The goal of this analysis
was to find the cell alignment that produced the smallest intertrial
variability. The method has the following steps:

(1) The action potential times {ti,j} were initially aligned to the
stimulus times {Si,1, Si,2, Si,3, Si,4}, where i correspond to the trial
repetition and j to the spike number. In addition, we defined the
following transformation in order to align the action potential
times {ti,j} to the motor events {Mi,1, Mi,2, Mi,3, Mi,4}:

Ti(t) = Lj+1 − Lj

Mi,j+1 − Mi,j
(t − Mi,j) + Lj when Mi,j ≤ t ≤ Mi,j+1 (1)

and {L1, L2, L3, L4} were landmark references. L1 was the average
reaction time of the monkeys for the first stimulus during cell
recordings, whereas L2 to L4 were defined as the target interval
duration (i.e. 450, 550, and 650 ms). This transformation was
performed for each trial across the five interval durations in
the SCT.

(2) The warping transformation was:

Ti
w(t) = wTi(t) + (1 − w)t (2)

that depended on the parameter w. When w = 0 the responses
were aligned to the sensory events S. When w = 1 the responses
were aligned to the motor events M.  w values between 0 and 1,
in steps of 0.1, produced alignments between S and M events.

(3) The average spike density function rw(t) for every interval dura-
tion across trials was  computed using the following equation for
a particular w.
rw(t) = 1
N

N∑
i=1

ni∑
j=1

1√
2��

e
−

(t−Ti
w (ti,j))

2

2�2 (3)
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Table  1
Relation between the �1 and the evidence in favor of the motor category, based on
Kass and Raftery (1995).

�1 Evidence in favor of motor category
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1/2 to 1 Substantial
1 to 2 Strong
>2 Decisive

where ni is the total number of action potentials in a trial i,
N is the total number of trials, and the Gaussian kernel width
� = 20 ms.

4) The likelihood function representing the multi-trial response
variability of a cell, for a particular w alignment, was  calculated
assuming that Di = {ti,1, ti,2, . . . , ti,ni

}, the times of ni spikes in
trial i, is a non-homogeneous Poisson process with rate rw(t):

i(w) = p(Di|w)  = e
−
∫ T

0
rw(t)dt

∏ni

j=1
rw(ti,j) (4)

ince the likelihood function represents the multi-trial response
ariability of a cell using the average spike density function, we
sed a leave-one-out cross-validation method to determine the
ariability of trial i from the average firing rate. Then, for every
euron, we computed the total probability that was  the product of
i(w) for every trial i and for each of the 5 target interval durations
nt:

(w) =
∏
Int

∏
i

Li(w) (5)

Finally, we  found the w that maximized the function L(w), which
orresponds to the value that maximizes the spike prediction accu-
acy across trials and that was called warping value (ŵ). This
easure is associated with the warping value that minimizes the

ntertrial variability of the cell activity.

.4. Bayes factor

The warping transformation finds the best-fitting alignment of a
ell. However, it is important to determine the probability of assign-
ng a particular warping value to a sensory or motor alignment. Let

 be the set of all spike times of a neuron across trials and interval
urations. For each cell we have:

p(D|sensory) = L(0)

p(D|motor) = L(1)

p(D|complex) =
∫ 1

0

L(w)dw

(6)

e then we define the following Bayes factors:

�1 = log10

(
p(D|motor)

p(D|sensory)

)
�2 = log10

(
p(D|motor)

p(D|complex)

)
�3 = log10

(
p(D|sensory)
p(D|complex)

) (7)

hese factors summarize the evidence provided by the data in favor
f one category, namely, motor (if �1 > 0 and �2 > 0), sensory (if
1 < 0 and �3 > 0), and complex (if �2 < 0 and �3 < 0).

Adapting the strength of evidence in favor of a category given by
ass and Raftery (1995) to the present problem, the classification

trength using �1 to discriminate motor cells is given in Table 1.

We classified the cells in three different categories based on this
nformation as follows: motor-neuron if �1 > 1 and �2 > 1, sensory-
euron if �1 < −1 and �3 > 1, and complex-neuron if �2 < −1 and
 Methods 212 (2013) 203– 210 205

�3 < −11. Cells that did not meet any of the criteria for classification
were considered indeterminate. Therefore, the � thresholds used
in the present paper (a value larger than 1) provide strong evidence
in favor of a particular cell category, according to Table 1.

2.5. Spike-train simulations

In order to investigate how the properties of the cell activation
profiles and the behavioral performance affected the warping anal-
ysis and the corresponding gamma  values, we generated random
spike-trains as well as behavior. In particular, we checked how the
following key parameters affected the power (see Fig. 2):

a) We  set the stimulus times {S1, S2, S3, S4} using an intertrial
stimulus interval of 650 ms.

b) We  generated random movement events {Mi,1, Mi,2, Mi,3, Mi,4,},
where i correspond to simulation trial, from a Gaussian distri-
bution with mean {L1, L2, L3, L4,} and standard deviation �M. In
this case Lj = Sj + RT , where RT is the average reaction time of
animals (360 ms).

(c) We  generated spike-trains from a non-homogenous Poisson
process with rate

ri(t) =
{

MR if �j − �R

2
≤  t ≤ �j + �R

2

0 otherwise

}
(8)

for all j, where:

�j = wsimulLj + (1 − wsimul)Sj + �R(1 − 2wsimul) (9)

�j depended on value wsimul that corresponds to the simulated
warping alignment. �R was the onset response latency of the cell
with respect to the wsimul.

We  used the inverse (Ti
wsimul

)
−1

(t) on the generated spike-trains
to return to original time scale (aligned to stimulus times). To this
end, initially we  mixed Eqs. (1) and (2) to have:

Ti
w(t) = A(t − Mi,j) + B when Mi,j ≤ t ≤ Mi,j (10)

where A = (w(Li,j+1) + (1 − w)(Mi,j+1 − Mi,j))/(Mi,j+1 − Mi,j) and
B = wLi,j + (1 − w)Li,j+1.

Then, the inverse warping transformation is given by:

(Ti
w)

−1
(t) = t − B

a
+ Mi,j where wLi,j + (1 − w)Mi,j ≤ t ≤ wLi,j+1

+ (1 − w)Mi,j+1 (11)

d) Finally, we  calculated �w and �1, �2 and �3 for 500 spike-train
simulations that varied systematically across the following
parameters: (1) the wsimul aligned value, (2) the standard devi-
ation of movement events �M, (3) the response duration �R, (4)
the mean firing rate MR of the simulated neural responses, and
(5) the onset response latency �R of the spike-trains (Fig. 2).
Therefore, these simulations allowed for the systematic char-
acterization of the effects of the cell activation profiles and the
variability in the movements during the SCT task on the L(w)
function and the Bayes factors, in order to suggest practical
guidelines to other studies using these methods.

(e) The parameters �R, MR, �R, and �M were also estimated from
the neurophysiological experiment as follows. �M was calcu-
lated as the standard deviation of movement times performed
by the monkeys. For the neural parameters, first, we  aligned

the neural responses to �w. Then, we defined the response win-
dow for each trial and interval produced in the sequence as the
interval between the first and last spikes. �R was  the average
of all response windows, whereas MR was the corresponding
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Fig. 1. Simulated spike-trains of a motor cell during the synchronization phase of the SCT. (A) Raster plot of the simulated activity aligned to the stimulus presentations
(filled circles) with an interstimulus interval of 650 ms,  where every tick mark corresponds to a single spike time stamp. (B) The same responses in A, but aligned to the
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the evidence in the L probabilities described in Eq. (5) in favor of
one response category we used the factors described in Eqs. (6)
and (7) as discrimination parameters. Using the criteria provided
by Kass and Raftery (1995) and described in Table 1, we classified

Fig. 2. Key parameters of the simulated spike-trains for the warping analysis. The
standard deviation of movement events �M , the neural response duration �R , the
maximum firing rate MR of the simulated neural responses, and the onset response
latency �R with respect to wsimul are shown. The top panel shows the spike trains
utton  press (open circles) using the transformation in Eq. (1).  The average spike de
he  warping transformation of Eq. (2).  (D) The logarithm of the homogeneity meas
arger  warping value (w−) is equal to 1. A spline filter was used for smoothing the o

average firing rate. Finally, �R was the distance between �w and
the beginning of the response window.

. Results

.1. Warping value

The SCT includes a sequence of sensory and motor events. We
eveloped a transformation that allowed us to align spike times to
he push-button events in a trial (see Section 2). This transforma-
ion depends on a parameter w which can acquire values between

 and 1. When w = 0, spikes are completely aligned to the stimuli, as
he original data. An example of this alignment is shown for simu-
ated spike-trains in Fig. 1A (filled circles). Conversely, when w = 1,
pike-trains are aligned to the motor events, as shown in Fig. 1B
open circles). Obviously, when responses were given intermediate

 values, they were aligned between sensory and motor events, as
epicted in Fig. 1C for w = 0.5. In order to find which w value was
he best to minimize the intertrial variability for a given cell, we
sed a homogeneity measure, L, whose value was inversely propor-
ional to this variability (see Section 2). Fig. 1D shows the log(L(w))
s a function of w for simulated spike-trains shown in Fig. 1A–C,
here it can be seen that the highest probability is reached when

�
 = 1. This means that the best alignment for the responses of this

imulated response was to motor events.

.2. Bayes factors

The warping value (�w), which is the w value that maximize the
(w) function, can be used to classify neurons as follows: cells with
 warping value close to zero were considered as sensory; a motor
euron was a cell with a warping value close to 1; finally, cells
ith warping values between 0 and 1 were considered as com-
lex cells (see Section 2). However, to determine how strong was
 function (Eq. (3)) is shown in black. (C) The same response aligned of w = 0.5 using
g(L(w)), computed from Eq. (5), is plotted as a function of the warping value. The
l data.
generated from non-homogeneous Poisson process using Eq. (8). The bottom panel
shows how the inverse warping transformation (Eq. (10)) is used to simulate the
variability in the movement times (� ′

M) and to produce the spike-train alignments
to  the wsimul . The inset between panels shows the comparison of the �R of the darker
gray  response window in the top right between the original and warped spaces.
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ig. 3. (A) �R as a function of wsimul the three specified values of �M in the inset. (B)
s a function of wsimul for larger values of �M .

ach cell into the three different categories using the following �
hresholds: motor when �1 > 1 and �2 > 1, sensory when �1 < –1 and
2 > 1, and complex when �2 < –1 and �3 < –1. Otherwise the cells
ere categorized as indeterminate.

.3. Spike-train simulations

We simulated cell responses and behavioral events for five trials

uring the synchronization phase of the SCT in order to deter-
ine how different parameters affect the log(L(w)) function and the

ayes factors. These parameters include the mean (MR), duration
�R), and onset response latency (�R) of the simulated spike-trains,

ig. 4. (A) Normalized logarithm of the homogeneity measure log(L(w)) (gray scale) is 

R = 100 ms,  MR = 60 Hz and �R = 150 ms.  Dots represent the average warping value ŵ as a
imulations. (B) �1 (black), �2 (dark gray) and �3 (light gray) as a function of wsimul for s
arameters as (A). (C) Normalized log(L(w)) as a function of parameter �M for simulate
arameters as (A). (D) Average �1 against the �2 across the �M values depicted in (C). Col
 a function of wsimul the same �M values. Note the large increase in both �R and MR

as well as the intertrial-variance or the movement responses of the
subject (�M) (Fig. 2). We  used a target interval of 650 ms  between
stimuli. These simulations depended on a parameter wsimul which
also can acquire values between 0 and 1 (see Section 2). Fig. 3
shows that �R and MR increased as a function of wsimul when applied
the inverse warping transformation, particularly for high values of
�M which produced elongated warping times. Furthermore, Fig. 4A
shows the log(L(w)) function for simulated responses using differ-

ent wsimul, where is evident the value ŵ varies linearly as a function
of wsimul. In addition, Fig. 4B shows how the three Bayes factors
change as a function of wsimul. Both �1 and �2 show a monotonic
increase, whereas �a shows a monotonic decrease as wsimul acquires

plotted as a function of w and wsimul for simulated spike-trains with �M = 70 ms,
 function of wsimul and the error-bars correspond to the standard deviation of 500
imulated spike-trains. Error-bars correspond to the standard deviation. The other
d spike-trains with wsimul = 1. Error bars are half a standard deviation. The other
or code in the inset.
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ig. 5. Plots of �1 against the �2 for simulated spike-trains generated with wsimul =
arameters: MR (A) and �R (B) and �R (C). Conventions as in Fig. 4D.

alues from 0 to 1 (Fig. 4B). Hence, as the wsimul becomes closer to 1
ore evidence there is in the log(L(w)) function and the Bayes fac-

ors of a motor alignment. Next, we generated motor spike-trains
wsimul = 1), and found that as �M increases, the log(L(w)) function
ecomes more steep (Fig. 4C) and the corresponding �1 and �2 val-
es increase (Fig. 4D). These results indicate that when the motor
esponses of the subject have an intertrial variability above 11 ms,
he Bayes factors show decisive evidence for the motor alignment,
s described in Table 1, for a �1 and �2 values larger than 2. In
ddition, we found that �1 and �2 values decrease as a function
f MR (Fig. 5A). The onset response latency (�R) of the simulated
pike-trains has little effect on the � values (Fig. 5B). Finally, the

1 and �2 values show large values for response durations (�R)
etween 60 and 460 ms,  with sharply decreasing values below
r above this range (Fig. 5C). To summarize, when the parame-
ers of an experiment fall inside the following ranges, we know

ig. 6. Neural activity of three motor neurons (M1, M2,  M3)  during the SCT. Top panel sh
ogarithm of homogeneity measure log L(w) as a function of w. For each neuron, the large
e  influenced by parameters �M , �R , �R , and MR depicted at the top. Conventions as in Fig
= 70 ms,  �R = 100 ms,  MR = 60 Hz and �R = 150 ms  but varying systematically across

that our warping method obtains appropriate results: �M > 11 ms,
MR > 2 Hz, and �R between 60 and 460 ms.  Fortunately, these values
encompass a wide range of cell responses and motor variability val-
ues, which include most of the neurophysiological data of cortical
areas.

3.4. Neural recordings during the SCT

Next, we performed the warping analysis on MPC  neurons of
monkeys performing the SCT. Fig. 6 shows the response of three
cells aligned to the motor events (w = 1; top of panels A–C). The
corresponding values of �M, �R, �R, and MR are depicted at the top.

In addition, log(L(w)) as a function of w are illustrated at the bottom
for each cell, where it can be seen that the highest probability is
reached when ŵ  = 1. This means that the best alignment for the
responses of these cells was  to motor events.

ows the raster plots of the cells aligned to the button press and bottom panel is the
r warping value (w−) is equal to 1. See how the shape of the log L(w) function can
. 1A.
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Table  2
Number of cells that were classified as motor, sensory, complex and undetermined
based of their � values.

Category Motor Sensory Complex Indeterminate
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Fig. 7. (A) Plot of the �1 against the �2 for all neurons recorded in MPC. Each circle
represents a cell. The upper right quadrant, where �1 > 0 and �1 > 0 is associated with
the motor cells, whereas the other three quadrants define the cells that are non-
motor, namely, sensory or complex. The motor cells are displayed as filled circles,
whereas open circle correspond to non-motor cells. The motor cells illustrated in
Fig. 6 are shown as M1,  M2  and M3  with a white asterisk. (B) Plot of the �1 against the
�3. The upper left quadrant, where �1 < 0 and �3 > 0 is associated with the sensory
cells  (filled circles), whereas the other three quadrants define the cells that are non-
Number of neurons 271 153 35 41
Percentage 54.2 30.6 7 8.2

The results of the Bayes factors analysis on our database,
epicted in Table 2, shows that most of the neurons (271/500,
4.2%) recorded in MPC  during the synchronization phase of the
CT were classified as motor. In addition, Fig. 7A shows the �1 and
2 values for the population of recorded neurons. Each dot repre-
ents a single neuron, where black dots represent the cells classified
s motor and open dots represent the non-motor cells. The cells M1,
2,  and M3  of Fig. 6 are marked with a white asterisk in Fig. 7A,

nd were categorized as motor. Furthermore, Fig. 7B depicts the �1
nd �2 values for the same population of neurons. In this case black
ots represent cells classified as sensory and open dots represent
he non-sensory cells. Finally, Fig. 7C shows the strong correlation
etween the duration of the activation period (�R) and the mean
ischarge rate (MR) of the recorded cells.

. Discussion

We presented a method to determine whether the activity of
 neuron was better aligned to sensory or motor events during
he SCT, using a warping algorithm. This warping method not only
ealigned the trial-by-trial cell activity to the stimuli (w = 0) or to
he button-press (w = 1), but also a wide range of intermediate val-
es (w > 0 and w < 1). A maximum likelihood estimator was used to
nd the warping value that minimized the trial-by-trial variabil-

ty, assuming that the activity of a cell was functionally associated
ith the behavioral parameter that produced the lowest intertrial

ariability. Then, a cell was categorized as sensory, complex, or
otor based on Bayes factors that evaluate the evidence in favor of

ach alignment (Kass and Raftery, 1995). Spike-train simulations
evealed that Bayes factors become larger when the magnitude of
he neural response become larger, the inter-trial variability of the
ell activity becomes smaller, and the variability motor responses
f the subject becomes larger. In addition, the Bayes factors show

 similar value for a wide range of cell response durations. Indeed,
hen the parameters of an experiment fall inside the following

anges: �M > 9.6 ms,  MR > 5 Hz, and �R between 60 and 460 ms,  our
arping method will obtain appropriate results. On the other hand,

he fact that 54% of cells in MPC  showed a significant alignment
o the tapping movements during the SCT, while only 31% were
ligned to sensory features, indicates that this premotor region is
iased toward temporal processing in motor rather than in sensory
erms.

The proposed method is applicable not only to the SCT, that
as been a backbone in the timing literature (Repp, 2005; Wing
nd Kristofferson, 1973), but also to other sequential paradigms
here there are more than one sensory, motor and/or cognitive

vents inside a trial. The study of the neurophysiological basis of
equential behavior has advanced enormously during the last ten
ears (Nakamura et al., 1998; Tanji, 2001; Lee and Quessy, 2003;
verbeck et al., 2006b). Neural signals encoding the ordinal and
patial elements of movement sequences have been described in
iverse frontal areas during skeletomotor or oculomotor tasks.
evertheless, these studies did not characterize whether the cell

esponses, associated with the sequential elements of the tasks,

ere aligned to the sensory or motor events of such paradigms.
ur warping method could be used easily on such databases to get

 reliable and fast answer in this regard. In addition, the proposed
arping method could be used when predicting neural responses
sensory (open circles), namely, motor or complex. (C) �R as a function of MR for the
recorded neurons in MPC  during the SCT. The black line corresponds to the best
linear model between the two parameters (Pearson r = 0.686, p < 0.0001).
associated to particular task events in self-paced behaviors, such
as multi-target reaching (monkey motor cortex, Cisek and Kalaska,
2005), song production (song bird auditory areas, Woolley, 2012)
or foraging (rodent hippocampus, Kolling et al., 2012). Although in
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hese behaviors there is a set of continuous variables, such as hand
elocity or body position, different landmarks or phasic events in
hese experiments can be used to perform our warping method.

Warping methods have been used to identify the patterns of
piking activity that are associated with specific stimuli or behav-
oral events, using preselected spike templates of activation (Chi
t al., 2007; Lawhern et al., 2012). In contrast, our warping method
etermines which parameter in a sensorimotor sequence produces
he lowest intertrial variability in the activity of the cell. This algo-
ithm can be used in neural activity recorded in any cortical or
ubcortical structure during the execution of a sequential task, and
ells in these areas can be categorized as sensory, motor, or com-
lex using our statistical criteria. However, it is important to notice
hat the definition of a sensory or motor cell in the present paper
epends strictly on the L(w) function and the Bayes factors. Addi-
ional neurophysiological criteria, such as sensory receptive fields
r the effects of microstimulation for the production of muscle con-
ractions, are needed to define sensory or motor responses in the
lassical neurophysiological sense.

Bayes factors have become popular in some parts of neuro-
cience and psychology (see Gallistel, 2009; Lodewyckxa et al.,
011; Penny et al., 2004; Rosa et al., 2010). Although they have
een used sparingly in electrophysiological studies (Cronin et al.,
010), our successful application of Bayes factors in this investi-
ation suggests they may  be of use in other neurophysiological
ontexts.
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