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The Synaptic Properties of Cells Define the Hallmarks of
Interval Timing in a Recurrent Neural Network
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Extensive research has described two key features of interval timing. The bias property is associated with accuracy and implies that time
is overestimated for short intervals and underestimated for long intervals. The scalar property is linked to precision and states that the
variability of interval estimates increases as a function of interval duration. The neural mechanisms behind these properties are not well
understood. Here we implemented a recurrent neural network that mimics a cortical ensemble and includes cells that show paired-pulse
facilitation and slow inhibitory synaptic currents. The network produces interval selective responses and reproduces both bias and scalar
properties when a Bayesian decoder reads its activity. Notably, the interval-selectivity, timing accuracy, and precision of the network
showed complex changes as a function of the decay time constants of the modeled synaptic properties and the level of background activity
of the cells. These findings suggest that physiological values of the time constants for paired-pulse facilitation and GABAb, as well as the
internal state of the network, determine the bias and scalar properties of interval timing.
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Introduction
Two critical independent variables are used to characterize behavior
in a wide range of timing tasks: constant error and temporal variabil-
ity. Constant error is defined as estimated duration minus target
duration; hence, it is the parameter that corresponds to the accuracy
of the estimate (how close is the subjective interval to the actual
interval; Woodrow, 1934). In contrast, temporal variability corre-

sponds to the precision of the subjective estimate, namely, how re-
producible are the estimates for a specific duration (Gibbon et al.,
1997). In computational terms, bias is the constant error and SD is
the temporal variability (Jazayeri and Shadlen, 2010). A myriad of
psychophysical studies across timing tasks and species have shown a
systematic shift in constant error across durations, with an overesti-
mation and underestimation of intervals for shorter and longer in-
tervals in a global set of durations, and with an indifference interval
that corresponds to the intermediate duration associated with con-
stant error equal to zero. We called this the bias property (Woodrow,
1934; Jones and McAuley, 2005; Gu et al., 2011). In addition, tem-
poral variability (i.e., SD) increases linearly as a function of duration.
This phenomenon has been called the scalar property of interval
timing and is a form of Weber’s law (Gibbon et al., 1997; Merchant et
al., 2008b; Mendez et al., 2011; García-Garibay et al., 2016). These
two parameters are critical for describing temporal process-
ing, yet few modeling studies have addressed the question of
how neural networks process temporal information in give rise to
bias and scalar properties.

Previous modeling work has shown that interval timing can
arise from changes in the network state. One of the critical aspects
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Significance Statement

Timing is a fundamental element of complex behavior, including music and language. Temporal processing in a wide variety of
contexts shows two primary features: time estimates exhibit a shift toward the mean (the bias property) and are more variable for
longer intervals (the scalar property). We implemented a recurrent neural network that includes long-lasting synaptic currents,
which cannot only produce interval-selective responses but also follow the bias and scalar properties. Interestingly, only physio-
logical values of the time constants for paired-pulse facilitation and GABAb, as well as intermediate background activity within the
network can reproduce the two key features of interval timing.
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of these state-dependent models is the fact that the simulated neu-
rons develop interval-selectivity (Laje and Buonomano, 2013). This
selectivity is due to the delicate balance between excitation and
inhibition inputs defined by paired-pulse synaptic excitatory plastic-
ity and slow synaptic currents (i.e., paired-pulse facilitation and
GABAb, respectively; Buonomano and Merzenich, 1998; Buono-
mano, 2000; Karmarkar and Buonomano, 2007). The notion of
interval-selectivity is similar to interval tuning, where cells pres-
ent an orderly change in activity reaching a peak in the preferred
interval. Recently, it has been shown that cells in medial premotor
areas and putamen are tuned to the duration of produced inter-
vals (Merchant et al., 2013b, 2015; Bartolo et al., 2014; Crowe et
al., 2014). The task performance of monkeys in these neurophys-
iological studies followed the bias and scalar properties of interval
timing (Zarco et al., 2009), suggesting a relation between interval
tuning and the two hallmark properties of temporal processing.
Now, both paired-pulse facilitation (Varela et al., 1997; Markram
et al., 1998) and GABAb (Benardo, 1994; Wang et al., 2010) are
time-dependent properties that extend from hundreds of milli-
seconds to a second and can be modified by experience (Schulz et
al., 1994; Misgeld et al., 1995). Yet, little is known about the role
of the time constants of these neuronal synaptic properties in
interval-selectivity and the two hallmarks of timing. Here, we pro-
vide a formal framework on how constant error and temporal vari-
ability depend on interval-selectivity, background activity, and
synaptic properties of neurons in recurrent neural networks. A
Bayesian decoding method was used to optimally read the neural
network activity and estimate the constant error and the tempo-
ral variability across durations. We found that physiological val-
ues of the time constants for paired-pulse facilitation and GABAb
can determine the bias and scalar properties.

Materials and Methods
Network model. We simulated a network of 800 excitatory and 200 inhib-
itory integrate-and-fire neurons that were sparsely ( p � 0.05; Buono-
mano, 2000) and randomly connected (Fig. 1). Each neuron (Amit and
Brunel, 1997a; Brunel and van Rossum, 2007) was characterized by a
membrane potential V that obeyed the equation:

�
dV

dt
� �V � IFac � IGABAb � IAMPA � IGABAa � N (1)

where � is the time constant of the neural membrane, which was � � 10
and � � 5 for excitatory and inhibitory neurons, respectively. When V
reached the threshold value of VT � 20 mV, an action potential was
triggered, which was followed by a membrane potential of Vr � 0 mV
during a refractory period of tr � 1 ms. Both IFac, IGABAb were the input
induced currents that provided information about the interval duration

and sequence order to each neuron (Fig. 1B). IFac was an excitatory current
that included paired-pulse facilitation, whereas IGABAb was a slow inhib-
itory current. The internal dynamics of the recurrent network were
driven by IAMPA and IGABAa, corresponding to fast excitation and inhibi-
tion, respectively (Amit and Brunel, 1997a; Fig. 1C). Hence, the facilita-
tion and GABAb plasticity occurred at input and not at recurrent
synapses. Finally, N(t) is white noise with a SD �N and zero mean.

Input stimuli. Input IFac, IGABAb currents were activated by four pulses
separated by a duration ds, generating an isochronous sequence with
three serial-order (So) elements. ds covered a range from 100 to 1500 ms,
on steps of 50 ms (29 values; Figs. 1A, 3B). This input mimics the sensory
metronome used to drive the motor response of subjects during a met-
ronome synchronization task (Merchant et al., 2011). Because the recur-
rent network properties were time-varying and depended on stimulus
history (i.e., depended on ds, the neuronal responses to the first pulse
were not included in the analysis. Consequently, the responses to the
stimulus across the serial-orders So1, So2, and So3 corresponded to the
activity linked to the second, third, and fourth input stimuli, respectively.
Last, ri(ds) was the response of neuron i to the input stimulus ds, and had
a value of 1 if the neuron generated at least one action potential within 20
ms after each input pulse, or 0 otherwise (Fig. 1D). Overall, this is a neural
network that processed temporal sensory information and produced in-
terval selective responses.

Input currents. Four input currents (Is) changed the membrane poten-
tial of each cell in the neural network. The temporal dynamics of each
current consisted of two coupled linear differential equations (Destexhe
et al., 1994):

�r,S

dIS

dt
� �IS � RS (2)

�d,S

dRS

dt
� �RS � �

i�k,S

Wi,S��t � tk,S�, (3)

where �r,S and �d,S are the rise and decay time constants, and RS is an
auxiliary variable. wi,S is the synaptic weight that determines the efficacy
of synaptic transmission coming from neuron i. tk,S is the time neuron i
emitted spike number k. We used two input driving currents correspond-
ing to the paired-pulse facilitation and GABAb, and two recurrent net-
work currents: AMPA and GABAa. The time constants were as follows:
�r,AMPA � �r,GABAa � 0.2ms, �d,AMPA � �d,GABAa � 0.7ms, �r,GABAb �
21ms.

Additionally, the values of wi,AMPA and wi,GABAa maintained the recur-
rent network response stable. These internal recurrent currents (AMPA
and GABAa) had a smaller effect on interval processing, because the fast
currents decayed before duration ds. However, the balance of AMPA and
GABAa was essential for maintaining the stability of the neural network
(Brunel, 2000; Vogels et al., 2011). Thus, the GABAa weights (wi,GABAa)
were fourfold the AMPA weights (wi,AMPA) because we used a 4:1 ratio
between the number of excitatory and inhibitory neurons. In contrast,

Figure 1. Neural-network configuration. The network consisted of 800 excitatory and 200 inhibitory integrate-and-fire neurons. A, Each cell in the network received a sequence of four stimuli
with a constant interstimulus duration ds, defining three serial-order elements So (red, green, and blue lines). B, The stimuli modulated the activity of each cell in the network through two input
induced currents: the AMPA with paired-pulse facilitation (associated with an increase in current for consecutive action potentials) and the GABAb (long-term hyperpolarization). Dashed line
corresponds to the induced current level after the second stimulus, as a reference. C, The recurrent network activity was driven by two recurrent network currents (AMPA and GABAa). D, The
excitatory cells of the network showed an output activity ri(ds), which was 1 if the neuron generated an action potential in response to an input stimulus ds, or 0 otherwise. Dashed lines correspond
to the reset voltage (Vr) and the threshold voltage (VT).
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the driving wi,Fac and wi,GABAb were randomly distributed (Fig. 2 A, C)
and were responsible for the selectivity to interval durations and serial-
order within the network activity.

Paired-pulse facilitation. The input current IFac was an AMPA current
where the amplitude increased upon the repeated presentation of stimuli.
Paired-pulse facilitation changed over time the synaptic efficacy and reflects
the history of presynaptic inputs. Facilitation in actual neurons last hundreds
of milliseconds and is caused by calcium influx inside the axon terminal after
a presynaptic action potential. Thus, IFac had a progressive amplification for
repetitive presynaptic activity, and it was modeled as an increase in transmit-
ter release probability p(t) (Tsodyks et al., 1998). Between presynaptic action
potentials, this probability followed the equation:

�Fac

dp�t�

dt
� P0 � p�t�, (4)

where �Fac was the time constant and P0 � 0.17 was the stable release
probability. In this model, p(t) changed its value immediately after

the appearance of an input action potential following the rule
p ¡ p � fP (1 � p) (fP � 0.62). Therefore, the synaptic weight wi,Fac was

multiplied by factor
p

P0
(Varela et al., 1997; Dayan and Abbott, 2001).

Notably, �d,GABAb and �Fac were the key independent parameters of our
analysis.

Neural encoding. Principal component analysis (PCA) was used to
reduce the high dimensional activity of the recurrent network activity
(Jolliffe, 2002; Figure 3A). Thus, instead of using 800 excitatory time-
varying responses, we used the two principal components as the net-
work responses rPCA � (rPCA1, rPCA2). The two principal components
explained �40% of the variability across simulations. The PCA was per-
formed on the covariance matrix (800 � 800) of the excitatory activity of
the network using the 2900 observations that corresponded to 100 sim-
ulations for each of the 29 ds. A bivariate normal distribution was fitted to
rPCA to calculate p(rPCA �ds) which is the probability of evoking response
rPCA given the stimulus ds (Fig. 3B, ellipses). Figure 3C shows the gener-

Figure 2. Modulation of the interval-selective responses of the network by the time constants of the synaptic currents. A, The interval-selectivity depended on the balance of weights of the
paired-pulse facilitation wi,Fac and the slow GABAb wi,GABAb. The color gradient depicts the probability of a neuronal response to the ds durations of 450 ms (left, magenta) and 850 ms (right, purple)
during So2 as a function of wi,Fac (abscissa) and wi,GABAb (ordinate), using the decay time constants of �Fac � 650 ms and �d,GABAb � 650 ms. B, The interval-tuning functions of two neurons (dark
and light gray functions) in the network that changed their response as a function of ds. The magenta and purple vertical lines correspond to the durations of 450 and 850 ms, which are associated
with a p(ri � 1 � ds) shown as horizontal arrows with a color code depicted in the color bar in A. Note the preferred duration of the neurons (543 ms dark gray, 871 ms light gray) depends on their
balance of weights shown as dots with the corresponding color in the maps of A. C, The interval-selectivity also changed as a function of the time constants of the synaptic currents. At �Fac � 350
ms �d,GABAb � 350 ms and the response probability weight maps are shifted to the right with respect to A. D, The interval tuning functions of the two cells in B were shifted to the left, showing now
a preferred duration of 337 ms (dark gray) and 464 ms (light gray).
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alized SD [gSD(ds)] for each ds. The gSD(ds) is the square root of the
determinant of the covariance matrix and is a measure that is directly
associated with the area of the ellipse of p(rPCA �ds) of Figure 3B. The
network activity showed an increase in gSD(ds) as a function of interval,
until ds reached 	1000 ms (Fig. 3C). After this duration, gSD(ds) was
asymptotic. We also measured the percentage of overlap between the
p(rPCA �ds) ellipses using the adjacent matrix Moverlap (ds,test, ds) for every
ellipse of ds,test against ds. The diagonal of Moverlap (ds,test, ds) corresponds
to a perfect overlap (100%), because ds,test and ds are the same (Fig. 3D).
Interestingly, Moverlap (ds,test, ds) showed an increase in width as a func-
tion of ds,test (Fig. 3D, dotted line). Based on previous neurophysiological
studies we defined ds,test as 450, 550, 650, 750, or 850 ms (Merchant et al.,
2011, 2013b, 2014).

Network decoding. Here, we assumed a normal prior distribution p(ds)
with a mean of 650 ms and SD �prior � 172 ms (Fig. 4B). This prior
created a clear bias property on the constant error that was difficult to
obtain from a uniform prior. Indeed, the mean at 650 ms produced an
indifference value close to 650 ms. Bayesian inference uses the posterior
probability p(ds � rPCA) for optimal decoding. This can be estimated using
likelihood probability p(rPCA �ds) (Fig. 3B), prior distribution p(ds), and
Bayes’ theorem:

p�ds � rPCA� �
p�rPCA �ds�p�ds�

p�rPCA�
. (5)

In this study, we calculated the Bayes least square decoded estimator (de),
a scalar that was dependent on a particular rPCA. In fact, de was computed
as the mean of the posterior probability p(ds � rPCA).

Because de was a deterministic function of rPCA [de � f(rPCA)], then
p(de � rPCA) � �(de � f(rPCA)), which is a Dirac function. Instead of using
the Dirac distribution, which is difficult to calculate numerically, we used
a normal distribution with mean f(rPCA) and small SD (5 ms), as follows:

p�de � rPCA� � N�de, f �rPCA�, 5ms�. (6)

Finally, we calculated the conditional probability of evoking the duration
de given that tested duration ds,test was presented (Fig. 4A). This proba-
bility depends on population response rPCA; nevertheless, we removed
the dependence of the response by marginalization:

p�de � ds,test� � ��p�de � rPCA�p�rPCA �ds,test�drPCA1drPCA2. (7)

Then, we substituted Equation 6 on Equation 7 and obtained the
relation:

Figure 3. Encoding duration in the neural network. A, Excitatory neurons in the network that were selective to duration [minimum MI between neural response ri(ds) and ds was 0.1 bits, from a
range between 0 and 1]. Each column is the probability of response induced by stimulus ds in the second serial order, and the ordinate corresponds to the durations ds, ranging from 100 to 1500 ms
in steps of 50 ms. Neurons that showed interval-selectivity were sorted as a function of their average response to durations, covering a wide range of preferred durations in the population. B, PCA
was used to determine the encoding of ds in the network response, which corresponds to rPCA � (rPCA1, rPCA2). Each dot represents a simulation of the network given a stimulus duration ds (color
code). A bivariate normal distribution was fitted for each ds to compute p(rPCA � ds) (ellipses include 90% of distributions). Note the strong interval-selectivity in network activity. C, Generalized SD
(squared root of the determinant of the covariance matrix) was computed for each ds. Error bars are the SD over 10 different network simulations. Network followed the scalar property 
1000 ms
and reached a plateau after this value. D, Matrix Moverlap(ds,test, ds) of the percentage of overlap between the p(rPCA � ds) ellipses for every ds,test (ordinate) against ds (abscissa). Note the increase in
the width of the Moverlap(ds,test, ds) as a function of ds,test (distance between the dashed white line and the diagonal).
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p�de � ds,test� � ��N�de, f �rPCA�,5ms�p�rPCA �ds,test�drPCA1drPCA2.

(8)

The decoded mean de
ˆ and SD �e of the decoder density p(de �ds,test) were

used as the key dependent parameters in the present study. Indeed,
the classical psychometric parameters of constant error and temporal

variability correspond to the bias CE�ds,test� � de
ˆ � ds,test and SD

TV(ds,test) � �e, respectively (Fig. 4C).
Mutual information. We computed the mutual information (MI) be-

tween the network decoding and the stimuli. It is a measure of the statis-
tical dependency between the behavioral variable, in this case ds,test, and a
neural response parameter de (i.e., the output of the decoder). First, we
calculated the joint probability p(de, ds,test) and p(de) using the decoder
probability p(de �ds,test). Then, we calculated MI as follows:

MI � �
ds,test

�
de

p�de,ds,test�log2� p�de,ds,test�

p�de� p�ds,test�
� . (9)

Results
Network model
We simulated a neural network of 800 excitatory and 200 inhib-
itory integrate-and-fire neurons that were sparsely and randomly
connected (Fig. 1; see Materials and Methods). The neural re-
sponse of each neuron was driven by two induced input currents:
paired-pulse AMPA facilitation and slow GABAb inhibition.

Both input currents were time-dependent properties defined by
their decay time constants (�d,GABAb and �Fac), which had postsynap-
tic effects on network neurons lasting hundreds of milliseconds (Fig.
1B). Within the recurrent network, the cells communicated through
AMPA with no paired-pulse plasticity and fast GABAa currents
(Fig. 1C). The induced input currents were modulated by four
input pulses separated by a duration ds (100 to 1500 ms). This
produced an input stimulus sequence with three serial-order el-
ements (So1, So2, So3; Fig. 1A). The neural selectivity to different
ds was determined by the history of input stimuli in the sequence
and balance of weights of the paired-pulse facilitation and
GABAb (Fig. 2). Hence, this is an unsupervised recurrent net-
work whose time selective properties depend on the stimulus
history and the equilibrium between induced slow excitatory and
inhibitory currents. In contrast, the responses to the first stimulus
were independent of ds because they were not shaped by slow
synaptic currents and paired-pulse synaptic plasticity. Conse-
quently, we focused on cell responses triggered by the last three
stimuli in the input sequence. The neural response ri(ds) of each
neuron i was 1 when at least one action potential was fired within
the first 20 ms after each stimulus, and 0 otherwise (Fig. 1D).

Neurons in the network showed differences in their average
response across the spectrum of ds, because the balance between
synaptic weights that undergo paired-pulse facilitation and GABAb
generates temporal selectivity (Buonomano, 2000). In fact, the

Figure 4. Decoding duration. A, Likelihood probabilities p(rPCA � ds) showed an overlapping that depended on the difference between durations ds [blue (450 ms) vs light blue (600 ms) or green
(850 ms) on top, and green (850 ms) vs light green (700 ms) or blue (450 ms) at the bottom]. B, Five test intervals were analyzed (ds,test �450, 550, 650, 750 and 850 ms; black arrows), thus, a normal
prior distribution p(de) (mean 650 ms and SDs �prior � 172 ms) was used to cover the range of tested durations and induce the bias property on the constant error. C, The marginal probability

p(de � ds,test) was computed from the encoding p(rPCA � ds,test) and decoding p(de � rPCA). The p(de � rPCA) was calculated using the Bayes theorem and the prior probability p(de). The mean (de
ˆ ) and SD

(�e) of p(de � ds,test) were used to calculate the key dependent parameters: constant error CE�de
ˆ �ds,test and temporal variability TV��e. Note that theMoverlap(ds,test, ds) increased as a function

of ds,test (Figs. 4A, 3D); namely, p(de � ds,test) showed a larger overlap between ds,test � 850 ms against ds � 700 ms (A, bottom, green and light green curves, respectively) than the overlap between
the ds,test � 450 ms against ds � 600 ms (A, top, blue and light blue curves, respectively). Accordingly, the distribution p(de � ds,test) showed a larger width for ds,test � 850 ms (green distribution)
than ds,test � 450 ms (blue distribution).
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response of excitatory neurons to temporal stimuli changed as
a function of these synaptic weights. The color gradients
shown in Figure 2A correspond to the probability of a neuro-
nal response during So2 as a function of wi,Fac (abscissa) and
wi,GABAb (ordinate), using the decay time constants of �Fac � 650
ms and �d,GABAb � 650 ms. It is evident that the response map is
shifted to the right and has a larger slope for a ds of 850 (Fig. 2A,
right, purple) than 450 ms (Fig. 2A, left, magenta). Consequently,
the dark gray dots at the bottom of these response maps corre-
spond to a neuron whose combination of weights generate a
tuning function with a short-preferred interval, whereas the light
gray dots at the top correspond to another neuron with a long-
preferred interval (Fig. 2B). The neural network included neu-
rons covering a wide range of wi,Fac and wi,GABAb, and hence,
showing an extensive range of preferred durations (Fig. 3A,B).
These simulations suggest that artificial neural circuits were ca-
pable of encoding temporal information as recorded in the me-
dial premotor cortex (Merchant et al., 2013b). In addition, the
interval-selectivity also changed as a function of the time con-
stants of the synaptic currents. At �Fac � 350 ms and �d,GABAb �
350 ms the response probability weight maps showed a shift to
the right and an increase in slope (Fig. 2C). This shift is accom-
panied by a change in the preferred interval of the neurons in the
network. For example, the tuning functions of the two cells in
Figure 2B were shifted to the left when the time constants of the
long-lasting currents are smaller (Fig. 2D) and in general, the
width of the tuning functions of interval selective neurons had
the tendency to increase as a function of preferred interval (Fig.
3A). However, this measure was highly variable across the neu-
rons in the network (data not shown).

The wide range of preferred intervals in the network was a
basic feature of the model. Nevertheless, our main goal was to
compute an estimate of temporal variability and constant error
from a decoder density function, which in turn was calculated
from the population activity of the network (Fig. 3). Thus, the
synaptic underpinnings of the bias and scalar properties were
studied using the decoded estimates of temporal variability and
constant error across durations.

Bayesian inference was used to compute the decoder density
function. First, we characterized the network encoding of dura-
tion ds using the response vector r � (r1, r2, . . . , rN), where N is
the number of excitatory neurons. It has been shown that differ-
ent behavioral parameters can be encoded in the activity of cell
populations (Ma et al., 2006; Naselaris et al., 2006) using a low
dimensional representation (Stopfer et al., 2003; Churchland et
al., 2012). Here, we found that some of neurons in the network
were interval selective; and therefore, we used PCA on the cova-
riance matrix of the excitatory activity of the recurrent network r
across all durations (29 durations � 100 simulations; see Mate-
rials and Methods) to extract the time-related activity from the
simulated population responses. In fact, the average response
variability explained by the first two principal components
rPCA � (rPCA1, rPCA2) was 	40% (Fig. 3B). The encoding relation-
ship between ds and rPCA was quantified by the conditional prob-
ability p(rPCA �ds) that is the likelihood probability of observing
the response rPCA given that duration was ds. In fact, p(rPCA �ds)
was computed from the bivariate normal distribution of rPCA for
each ds (Figs. 3B, ellipses, 4A). The variability of neural network
responses was determined using the generalized SD [gSD(ds)],
which is the square root of the determinant of the covariance
matrix of the rPCA and, therefore, is a measure that is directly
associated with the p(rPCA �ds) and area of the ellipses of Figure
3B. The network activity showed an increase in gSD(ds) as a func-

tion of interval, until ds reached 	1000 ms. After this duration,
the gSD(ds) was asymptotic (Fig. 3C). These results support the
notion of different neural timing mechanisms for sub and supra-
second scale (Grondin, 2012, 2014; Méndez et al., 2017), and
suggest an important role of paired-pulse facilitation and slow
inhibition in the former time range. In addition, we computed
the percentage of overlap between the p(rPCA �ds) ellipses using
the adjacent matrix Moverlap (ds,test, ds) for all the ellipses of ds,test

against ds. The diagonal corresponds to a perfect overlap because
ds,test and ds are the same. Notably, the width of the overlap in
Moverlap (ds,test, ds) increased as a function of ds,test (Fig. 3D, dotted
line), with a larger spread for a ds,test � 850 ms against surround-
ing ds (Fig. 3D, green curve) than for the ds,test � 450 ms (Fig. 3D,
blue curve).

Then, we performed Bayesian decoding from the population
response rPCA to estimate the duration de that evoked this re-
sponse. Classical Bayesian inference depends on posterior prob-
ability p(ds �rPCA) (Eq. 5), which is the probability that the interval
ds was presented given that the population response rPCA was
recorded. This posterior probability was computed as the prod-
uct of p(rPCA �ds) (Figs. 3B, 4A) by p(ds), which was the prior
probability of (ds), divided by p(rPCA), that, in turn, was the prob-
ability of the population responses across all ds. The prior prob-
ability reflects the knowledge about the occurrence of previous
durations, and several studies have successfully used a Gaussian
prior distribution to model motor timing across different tasks
in humans (Acerbi et al., 2012; Shi et al., 2013). Thus, we used as
prior probability a Gaussian distribution with a mean of 650
ms and a SD of �prior � 173 ms (Fig. 4B; see the next section for
the validation of this �prior). Given the Bayesian least-squares,
de was a scalar that was dependent on a particular rPCA and
corresponded to the mean of the posterior probability p(ds �rPCA)
(Fig. 4).

From the scalar decoded value de, we calculated the decoder
density function p(de �ds,test), which measures the probability of
observing an estimated interval de given that the stimulus ds,test

was presented (see Materials and Methods; Eq. 8; Fig. 4C). We

computed the mean de
ˆ and SD �e of the decoded density function

p(de �ds,test). Importantly, the decoded constant error was calcu-

lated as CE(ds,test) � de
ˆ � ds,test and the temporal variability as

TV(ds,test) � �e (Fig. 4C).
de was a decoded measure of the rPCA linked to a specific ds,test;

however, some responses rPCA were evoked by adjacent stimuli ds,
corresponding to the overlap of p(rPCA �ds) between this specific
ds,test and the tested ds. Thus, the width of decoder density
[TV(ds,test)] depended on the Moverlap(ds,test, ds), because a larger
Moverlap(ds,test, ds) produced a larger uncertainty that a particular
rPCA was linked to a ds,test. For example, Moverlap(ds,test � 850,
ds � 700) (Fig. 4A, bottom) was larger than Moverlap(ds,test � 450,
ds � 600) (Fig. 4A, top). Therefore, the decoder density of
p(de �ds,test � 850) (Fig. 4C, green density) was broader than
p(de �ds,test � 450) (Fig. 4C, blue density).

We systematically measured the effects of the time constants
of the slow inhibitory current (�d,GABAb) and paired-pulse facili-
tation (�Fac) on the bias and scalar properties resulting from the
decoded behavior of the constant error and temporal variability
across ds, respectively.

Hallmark timing properties in the network
Figure 5A shows the decoder density function p(de �ds,test) for the
different ds,test for the serial order So2. Three key features can be

extracted from these data. First, the temporal estimator de
ˆ was
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tuned to ds,test because of the balance of weights of the paired-
pulsed facilitation and GABAb (Fig. 2), which in turn produced
systematic changes in network responses for each stimulus ds

(Fig. 3B). Second, de
ˆ was overestimated for the short durations

and underestimated for longer intervals (Fig. 5A, arrows vs lines).
Indeed, as seen in Figure 5B, there was a monotonic decrease in
constant error (negative slopeCE) as a function of duration, and
the indifference interval was observed at 650 ms (with intercept
M650CE equal to 0 at 650 ms). Therefore, the network decoding
followed the bias property observed in psychophysical studies.
Last, the temporal variability followed the scalar property of in-
terval timing, namely, there was an increase in variation as a
function of ds,test (Fig. 5C), with a positive slopeTV and a positive
intercept M650TV at 650 ms.

The neural network showed also a response modulation as a
function of the serial order of input stimuli. The mean squared
error (MSE) of the decoded serial-order reached a minimum
when the likelihood p(rPCA �ds) and decoder p(de �rPCA) probabil-

ities corresponded to the same serial order (e.g., the MSE of So1
was minimum when p(rPCA �ds) and p(de �rPCA) came from So1
[right, red] and increased for So2 [right, green], and So3 [right,
blue]; Fig. 5D). Nevertheless, the bias and scalar properties were
similar across So’s. Hence, in the remaining of the paper we fo-
cused our analysis on the data from So2.

We determined the �prior of the Gaussian prior distribution
that produced the largest mutual information of duration and
that optimally generated the scalar and bias properties. Figure 6
shows that a �prior � 172 ms (green dotted line) was associated
with the largest mutual information (Fig. 6D), and produced a
decoded constant error and temporal variability across ds,test that
robustly followed the bias and scalar properties (Fig. 6B,C, re-
spectively). Indeed, from the linear fits of Figure 6B on the con-
stant error as a function of ds,test, we extracted the slope (slopeCE)
and the intercept at 650 ms (M650CE) across �priors to build Figure
6E, which defines four quadrants. This Figure demonstrates that
an increase in �prior produced both an increase of slopeCE and a

Figure 5. Decoding of time from the network’s activity. A, The decoder density function p(de � ds,test) across ds,test and So2. Each curve corresponds to the average of 10 different network
simulations with a �Fac � 650 ms and a �d,GABAb � 650 ms. Note the increase in p(de � ds,test) variability as a function of ds,test. B, The constant error CE(ds,test) plotted as a function of duration for the
second serial order in the stimulus sequence. The linear regression corresponds to CE(ds,test) � M650CE � slopeCE(ds,test�650). C, Temporal variability TV(ds,test) for each ds,test and the linear
regression corresponds to TV(ds,test) � M650TV � slopeTV(ds,test � 650). Error bars in B and C are the SD over 10 different network simulations. D, The neural network also showed a modulation in
decoding interval-selectivity as a function of the serial order of input stimuli. The MSE of the estimated duration de was computed for nine combinations of serial order responses (red, So1; green, So2;
blue, So3) for each rPCA (the 3 bars for each So). The results show that the MSE was minimum when p(rPCA � ds) and rPCA corresponded to the actual So.
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drift of M650CE from negative to positive values, acquiring a
value of zero (which is the indifference interval) close to �prior �
172 ms (green point). With this �prior the magnitude of the con-
stant error and temporal variability as a function ds,test is similar to
what we found empirically in previous studies (Zarco et al., 2009;
Donnet et al., 2014). Note that a small �prior did not produce a
perfect alignment of constant error 	650 ms, suggesting that not
only normal prior distribution but also the neural network pop-
ulation activity determined the bias alignment as a function of ds.
Similarly, Figure 6F shows the four quadrants resulting from
plotting the slopeTV against the intercept M650TV at 650 ms. In
this case, the increase in �prior produced an increase in both the
slopeTV of the scalar property and the intercept M650TV. It is
important to notice that the �prior in the Bayesian decoding mod-
ified the slope of the scalar property (Fig. 6C).

Overall the scalar property depended on both the likelihood
probability that was associated with the representation of dura-
tion in the activity of the neural network and the prior probability
of the decoding. However, two features of the likelihood proba-
bility had a substantial impact on the decoded temporal variabil-
ity TV(ds,test): the generalized SD gSD(ds,test) (Fig. 3C, Pearson
correlation: TV vs gSD, r � 0.23, p 
 0.0001) and, more impor-
tantly, the percentage of overlap between the p(rPCA �ds) ellipses,
corresponding to Moverlap(ds,test, ds) [Figs. 3D, 4A,C; Pearson
correlation: TV vs �ds Moverlap(ds,test, ds), r � 0.95, p 	 0.0001].

Synaptic effects
The properties of the decoder density function p(de �ds,test) depend
on the time-varying input synaptic currents. Hence, we changed the
temporal dynamics of IFac and IGABAb so that their decay time

constants (�d,GABAb and �Fac) varied from 50 to 1000 ms (Benardo,
1994; Markram et al., 1998). We investigated how the decay time
constants affected time accuracy and precision for different du-
rations. For this purpose, we characterized how the slopes and
intercepts of constant error and temporal variability, with respect
to ds,test, varied as a function of network parameters. Figure 7A
shows M650CE and slopeCE values across time constants. The bias
property corresponds to negative slopeCE (Fig. 7A, inset, light
green and yellow regions). There is a wide range of values of �Fac

and �d,GABAb where the bias property was satisfied because the
mean of the decoding prior distributions is 650 ms. However,
there is a sector with low �Fac where the slopeCE was positive and
that did not follow the bias property (inset, red and blue regions).
On the other hand, Figure 7B shows the M650TV and slopeTV

values across time constants. The blue and red regions located
mainly along the diagonal of Figure 7B are associated with posi-
tive slopeTV; hence, they are the sectors where the scalar property
was followed (Fig. 7B, inset, light red and blue regions). The gray
shadow regions in Figure 7, A and B, show the combinations of
decay constants associated with no linear relation between the
constant error or the temporal variability as a function of ds,test.
Last, we used mutual information as a global measure of infor-
mation about duration ds,test contained in the decoder. Because
we used five different values for ds,test, mutual information close
to log2(5) indicated that de was strongly dependent on stimulus
duration, whereas mutual information close to log2(1) implied
random decoding with no interval-selectivity. Figure 5C shows mu-
tual information as a function of �d,GABAb and �Fac. It increased
monotonically as a function of the time constants, although it
reached asymptotic values at large and similar �d,GABAb and �Fac.

Figure 6. The effects of the Prior probability. A, The decoded interval depended on the prior distribution. p(de) was normal distribution with a mean 650 ms and SDs �prior (D, bottom, color code).
B, Constant error (CE) decreased and (C) temporal variability (TV) increased as a function of ds,test, but the rate of decrease or increase depended on �prior. D, The mutual information between de and
ds,test increased as a function of �prior and had a maximum at a value of 172 ms (green dot). Dashed line corresponds to mutual information between network response rPCA and ds,test. E, Slope
(slopeCE) and constant (M650CE) for the linear regression of CE as a function of ds (CE(ds,test) � M650CE � slopeCE(ds,test � 650)). Each color dot corresponds to different �prior value in D. Four sectors
on the slopeCE-M650CE plane were defined using the combinations of positive or negative values for slopeCE and M650CE. F, Slope (slopeTV) and constant (M650TV) for the linear regression of temporal
variability [TV(ds,test) � M650TV � slopeTV(ds,test � 650)]. The same four sectors in E were defined using M650TV and slopeTV.
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Notably, the largest values of mutual information were observed
at low �d,GABAb and intermediate to high �Fac, as well as at inter-
mediate to high �d,GABAb and low �Fac.

Together, these findings support the notion that interval-
selectivity, as well as the bias and scalar properties showed com-
plex relations when generated by a recurrent neural network with
long-lasting input currents. Only specific ranges of the decay time
constants produced networks with proper duration tuning that
also followed the two hallmark properties of interval timing (Fig.
7A,B, insets, bright areas; Fig. 7D, dark area). For example, the
area around �Fac � 650 ms and �d,GABAb � 650 ms (Fig. 7, black
circle in each panel) met these criteria and corresponds to phys-
iological values of these decay constants.

There were combinations of �Fac and �d,GABAb where the bias
and/or scalar properties were not met. For example, when
�Fac � 100 ms and �d,GABAb � 300 ms the decoding followed the
scalar but not the bias property (Figs. 7, black triangles, 8C,D,
black triangles), whereas with a �Fac � 600 ms and �d,GABAb � 150
ms the decoding results followed the bias but not the scalar prop-
erty (Fig. 7, black squares, 8C,D, black squares). Finally, there is a
region around �Fac � 950 ms and �d,GABAb � 50 ms where both
bias and scalar property were not satisfied (Fig. 7, black dia-
monds, 8C,D, black diamonds). Two important notions emerge
from these findings. First, the prior distribution centered 	650
ms induced the bias property in specific ranges of the decay time
constants (Fig. 7C). However, there were regions where the con-
stant error did not follow the bias property, suggesting that not
only prior distribution but also the activity of the neural net-
work (Fig. 8A) was able to shape the constant error. Second,
the increase in width of Moverlap(ds,test, ds) is necessary to ob-

serve an increase in temporal variability as a function of ds

(Fig. 8B).

Noise effects
We also determined the effect of noise within the recurrent net-
work on the decoding of duration. The purpose was to determine
how the background activity of the network, in combination with
the long-lasting synaptic input, modulates the constant error and
temporal variability across intervals. We changed the membrane
potential V of each neuron with white noise of magnitude �N

(measured as percentage of threshold VT; see Materials and
Methods). As expected, larger noise produced a decrease in accu-
racy, precision, and mutual information (Fig. 9). However, the
effects of noise on these parameters had an interaction with the
decay time constants of the input currents. Network noise pro-
duced an increase in the negative slopeCE, indicating that the de-
coding accuracy decreased with noise, although the bias property
was held across noise levels (Fig. 9A). Figure 9B shows that the
temporal variability increased as a function of noise, and that the
slope of the scalar property (slopeTV) showed an increase as a
function of noise. Notably, at large noise levels the temporal
variability remained similar across ds, and therefore, the scalar
property was lost. Finally, mutual information decreased asymp-
totically as a function of noise (Fig. 9C).

Discussion
The present study supports three conclusions. First, recurrent
neural networks with time-dependent properties show time-
selective responses that can follow the bias and scalar properties
of interval timing in the range of hundreds of milliseconds when

Figure 7. Synaptic effects. Effects of the time constants �Fac (ordinate) and �d,GABAb (abscissa) on the constant error (A), temporal variability (B), and mutual information (C). A, The color code
corresponds to the four combinations of positive or negative values for M650CE and slopeCE, as depicted in the inset. The bright green and yellow regions define the combinations of time constants
that produced a negative slopeCE and, hence, followed the bias properly. B, Combinations of positive or negative slopeTV and low or large M650TV. Note that the bright red and blue regions follow the
scalar property, namely, they show a positive slopeTV (inset). The gray regions in A and B correspond to the time constant combinations that showed nonsignificant linear regressions between CE or
TV and ds, respectively. C, Mutual information between de and ds,test, color scale corresponds to the bits of information varying to log2(1) to log2(5) for the five ds,test values. D, The area in dark gray
indicates the values of �Fac and �d,GABAb where the bias and scalar properties were satisfied and the linear regression between CE or TV and ds was significant. The black dot in each panel corresponds
to the time constant values used in Figures 5 and 6, whereas the black diamond, square, and triangle correspond to the values used in Figure 8.
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read by an optimal Bayesian decoder. Second, interval-selectivity,
accuracy, and precision showed complex behaviors as a function
of the decay time constants of the modeled synaptic properties,
suggesting that the constant error and the temporal variability,
present in numerous species and timing tasks, depend on specific
combinations of time constants for paired-pulse facilitation and
GABAb. Finally, the increase in the variability of cell membrane
potential (i.e., noise) of the recurrent network produced a general-
ized decrease in mutual information, accuracy, and precision of tem-
poral processing. At large noise levels the scalar property is lost.

Several neurocomputational models have been implemented
to describe the main operations behind temporal processing in
the subsecond scale. These models include ramping activity
(Durstewitz, 2003; Miller et al., 2003; Méndez et al., 2014), drift
diffusion (Simen et al., 2011; Merchant and Averbeck, 2017),
synfire chains (Bienenstock, 1995; Hass et al., 2008), neural oscil-

lators (Treisman, 1963; Medina et al., 2000; Matell and Meck,
2004; Merchant and Bartolo, 2018), coincidence detectors (Kar-
markar and Buonomano, 2002; Matell and Meck, 2004), and
state-dependent networks (Buonomano, 2000; Karmarkar and
Buonomano, 2007; Hardy and Buonomano, 2018). Most of them
implicitly or explicitly produce time selective responses and can
replicate the scalar property of interval timing. However, none of
the previous models were designed to reproduce, as a whole, the
neural selectivity to durations, as well as the bias and the scalar
properties (Hass and Durstewitz, 2014; Addyman et al., 2016).
We accomplished this by using recurrent neural networks that
simulated time-varying synaptic properties and membrane po-
tential noise variations and then using Bayesian inference to op-
timally decode the activity of the network.

The scalar property is a hallmark of temporal processing and
had an enormous impact on the study of the psychophysical and

Figure 8. The bias and/or scalar properties were not followed at specific synaptic time constants. A, Likelihood probabilities p(rPCA � ds) across ds when the scalar but not the bias property was
observed (left, �Fac � 100 ms and a �d,GABAb � 300 ms, black triangle; C, D), when the bias but not the scalar feature was obeyed (center, �Fac � 600 ms and a �d,GABAb � 150 m, gray square), and
when both the scalar and bias properties were disrupted (right, �Fac � 950 ms and a �d,GABAb � 50 ms, light gray diamond). B, Moverlap(ds,test, ds) matrix for the three conditions in A. A
Moverlap(ds,test, ds) between adjacent durations that showed an increase as function of ds,test (dotted line, same notation as in Fig. 3D) produced a temporal variability that followed the scalar
property. C, Constant error and (D) temporal variability as a function of ds,test for the three time-constant combinations in A and B (markers depicted in A).
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neural basis of interval timing (Gibbon et al., 1997; Grondin,
2001; Merchant et al., 2008b,c; Merchant and Averbeck, 2017). In
addition, bias property, also known as the Vierordt’s law, has
been described since the end of the 19th century (Vierordt, 1868;
Woodrow, 1934) and has had a key role in the study of the neu-
robiology of temporal processing. Thus, the preferred internal
interval (Fraisse, 1963), the temporal memory (McAuley and
Jones, 2003; Gu and Meck, 2011; Taatgen and van Rijn, 2011), the
distribution of the intervals used in an experiment (i.e., global tem-
poral context; Jones and McAuley, 2005; Jazayeri and Shadlen,
2010), and the timing abilities of the subjects (e,g, musicians vs
non-musicians; Cicchini et al., 2012) have an important influ-
ence on the indifference interval and the slope of the bias prop-
erty. Both the scalar and bias properties are commonly seen in the
temporal performance across tasks and species, and both can be
explained using the classical scalar timing model (Treisman,
1963; Gibbon et al., 1997; Grondin, 2001; Shi et al., 2013). From
a Bayesian perspective, these properties emerge from the integra-
tion of two independent functions: likelihood and prior distribu-
tion. A recent study has shown a Bayesian encoding system in V1,
where the activity evoked by complex visual stimuli corresponds
to the likelihood response, and the spontaneous activity that
changes with the animal visual experience represents the prior
distribution (Berkes et al., 2011). Using this probabilistic frame-
work, the temporal performance can be explained properly
(Jazayeri and Shadlen, 2010; Shi et al., 2013; Gu et al., 2016),
although it has been shown that the bias feature is not optimal
when a high accuracy is needed, such as in the case of professional
drummers reproducing a beat (Cicchini et al., 2012). A previous
study successfully used the Bayesian scheme to model time repro-
duction in humans, although it assumed sensory and motor like-
lihood functions that were Gaussian and that explicitly followed
the scalar property (Jazayeri and Shadlen, 2010; Shi et al., 2013;
Roach et al., 2017). In contrast, the present study obtained the
likelihood probabilities from the synaptic properties of cells in
recurrent neural networks without further assumptions. Indeed,
the neural population activity in the network follows the scalar
property when the proper long-lasting synaptic constants are
used (Figs. 4, 7). However, it is important to mention that we had
to include a normal prior distribution to reproduce the change

in timing accuracy as a function of duration, consistent with
previous studies on time processing (Acerbi et al., 2012; Shi et
al., 2013; Roach et al., 2017). A uniform prior did not generate
a robust bias property. Furthermore, the width of the Gaussian
prior (�prior) influenced the slope of the scalar feature. Hence, an
optimal reader that has access to this sensory timing information
needs to include prior knowledge about the task conditions to
reproduce the bias property and modulate the slope of the scalar
feature (Ivry and Hazeltine, 1995; Merchant et al., 2008c, 2013a).

Interval tuning occurs early in the processing of sensory stim-
uli, as in the case of the midbrain for auditory stimuli in the range
of tens of milliseconds (10 –100 ms; Sayegh et al., 2011). In con-
trast, the primary auditory cortex (A1) shows cells that are tuned
to a wider range of durations (10 –500 ms) than the inferior col-
liculus, suggesting that duration selectivity in A1 results from
integration along the time domain across the auditory ascending
pathway (He et al., 1997). Conversely, the first node of the visual
pathway that shows duration tuned cells is the primary visual
cortex or V1, with cells tuned to a range of 50 to 400 ms (Duysens
et al., 1996). In these neurophysiological studies, the width of the
tuning function does not seem to scale as a function of the inter-
val (A1: He et al., 1997; Fig. 5; V1: Duysens et al., 1996; Figure 4),
although no specific analysis were performed to determine the
scalar property of neurons. Accordingly, the present study pre-
dicts that using an Integrate and Fire recurrent neural network it
is difficult to see the scalar property from the tuning curves of
individual neurons.

However, at the population level the generalized SD gSD(ds,test)
(Fig. 3C) and, more importantly, the percentage of overlap be-
tween the ellipses [Moverlap(ds,test, ds)], had a large correlation
with the decoded scalar property. On the other hand, it has been
shown recently that single striatal cells follow the scalar property
with a spread in the discharge rate that increases as a function of
the onset response latency (Mello et al., 2015). The medial pre-
motor areas also show temporal scaling in their response profile,
namely, the responses are stretched or compressed in accordance
with the produced interval (Crowe et al., 2014; Wang et al., 2018).
Altogether these studies support the idea that temporal pro-
cessing depends on the top-down reading of sensory timing
information and the generation of predictive signals in the

Figure 9. Noise effects. Constant error (A), SD (B), and mutual information (C) as a function of noise level (Eq. 1, N ) in a recurrent network with a �Fac � 650 ms and a �d,GABAb � 650 ms. Note
that at large levels of noise there was an increase in the constant error, especially at low durations (A, inset). In addition, as the noise increased there was a systematic increment in temporal variability
accompanied by an increase in slopeTV (B, inset). However, at the largest levels of network noise the scalar property was lost (B, green lines), and the mutual information for ds,test was low and no
interval-selectivity was observed in the network responses (C). The color scale in C corresponds to the amount of network noise measured as percentage of VT (normalized membrane potential; see
Materials and Methods). The open blue circle corresponds to the level of noise used in Figures 4 –8.
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motor system that obey the scalar property (Merchant and de
Lafuente, 2014; Merchant and Yarrow, 2016; Petter and Mer-
chant, 2016).

With the model reported here, the two key timing properties
showed a complex behavior and could be reproduced simultane-
ously for a limited set of neural noise magnitudes and decay
time constants, which correspond to physiological values. The
magnitude of the dynamic synaptic facilitation (Varela et al., 1997;
Markram et al., 1998), as well as the slow inhibition due to the
activation of GABAb receptors (Benardo, 1994; Tamás et al.,
2003; Wang et al., 2010) in cortical and subcortical areas show
time constants that affect the processing of intervals in the
scale of hundreds of milliseconds. In addition, the dynamics of
both time-dependent properties can be modulated by behav-
ioral experience (Schulz et al., 1994; Misgeld et al., 1995). As
far as we know, this is the first modeling study describing how
the input synaptic properties of a recurrent network can mod-
ulate the accuracy and precision of time processing. Thus, this
paper shows that the ability of cortical networks to intrinsi-
cally process temporal information and follow the scalar and
bias properties depends on reaching decay time constants
	650 ms for paired-pulse facilitation and 650 ms for GABAb
metabotropic receptors, both of which are physiologically
meaningful values.

Large neural noise in the recurrent network, which can be linked
to the spontaneous activity of cells in the mammalian brain
(Shadlen and Newsome, 1994; Amit and Brunel, 1997b; Vogels et
al., 2011), produced an asymptotic decrease in mutual informa-
tion and an increase of constant error and temporal variability.
Crucially, at large noise levels the scalar property was lost because
the temporal variability was similar across ds. These findings are
consistent with the observation that a subgroup of Parkinson’s
disease (PD) patients showed an increase in variability and
slopeTV during a time production task, whereas others lost the
scalar property of interval timing (Merchant et al., 2008a; Gu et
al., 2016). Hence, the heterogeneity of temporal performance in
PD patients can be associated with different magnitudes of dam-
age in the dopaminergic input, which in turn can generate differ-
ent neuronal noise levels in the corticobasal ganglia circuit, as
demonstrated previously (Levy et al., 2000; Timmermann et al.,
2003). To end, it is important to notice that we limited the effect
of fast recurrent synapses (AMPA and GABAa) on interval pro-
cessing on our network. Thus, the reported results were associ-
ated to synaptic noise and not to the network recurrence. In
further studies we will determine the role of the recurrent con-
nections within the neural network on temporal processing, be-
cause it is well known that asynchronous and irregular dynamics
within a neural network, due to a complex balance between fast
recurrent synapses, is important to induce broad tuning activity
in response to the transient input stimuli (Vogels et al., 2011;
Hennequin et al., 2017).

In conclusion, learning a timing task may be associated with
the appearance of interval tuning, the reaching of particular levels
of spontaneous activity, as well as the adoption of specific time
constants on paired-pulse synaptic plasticity and slow synaptic
currents in cortical or subcortical recurrent circuits. Although the
experiments needed to test these hypotheses are technically chal-
lenging, our laboratory has already demonstrated interval tuning
in cells of the primate medial premotor areas and the putamen
during interval production tasks (Merchant et al., 2013b, 2015;
Perez et al., 2013; Crowe et al., 2014).
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